deepdream / app.py
Abhinav Jangra
Update app.py
9c10f01 verified
raw
history blame
7.87 kB
import streamlit as st
st.warning("For larger images, the processing time may be significant. Consider using a lower resolution image or be prepared to wait.")
import numpy as np
import torch
from torch.autograd import Variable
from torch.optim import SGD
from torchvision import models, transforms
import PIL
from PIL import Image as PILImage
import os
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import HTML
import scipy.ndimage as ndimage
#%matplotlib inline
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from io import BytesIO
def showarray(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
f = BytesIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
def showtensor(a):
mean = np.array([0.485, 0.456, 0.406]).reshape([1, 1, 3])
std = np.array([0.229, 0.224, 0.225]).reshape([1, 1, 3])
inp = a[0, :, :, :]
inp = inp.transpose(1, 2, 0)
inp = std * inp + mean
inp *= 255
showarray(inp)
clear_output(wait=True)
def plot_images(im, titles=None):
plt.figure(figsize=(30, 20))
for i in range(len(im)):
plt.subplot(10 / 5 + 1, 5, i + 1)
plt.axis('off')
if titles is not None:
plt.title(titles[i])
plt.imshow(im[i])
plt.pause(0.001)
normalise = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
normalise_resize = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def init_image(size=(400, 400, 3)):
img = PIL.Image.fromarray(np.uint8(np.full(size, 150)))
img = PIL.Image.fromarray(np.uint8(np.random.uniform(150, 180, size)))
img_tensor = normalise(img).unsqueeze(0)
img_np = img_tensor.numpy()
return img, img_tensor, img_np
def load_image(path, resize=False, size=None):
img = PIL.Image.open(path)
# if size is not None:
# img.thumbnail(size, Image.ANTIALIAS)
if resize:
img_tensor = normalise_resize(img).unsqueeze(0)
else:
img_tensor = normalise(img).unsqueeze(0)
img_np = img_tensor.numpy()
return img, img_tensor, img_np
def tensor_to_img(t):
a = t.numpy()
mean = np.array([0.485, 0.456, 0.406]).reshape([1, 1, 3])
std = np.array([0.229, 0.224, 0.225]).reshape([1, 1, 3])
inp = a[0, :, :, :]
inp = inp.transpose(1, 2, 0)
inp = std * inp + mean
inp *= 255
inp = np.uint8(np.clip(inp, 0, 255))
return PIL.Image.fromarray(inp)
def image_to_variable(image, requires_grad=False, cuda=False):
if cuda:
image = Variable(image.cuda(), requires_grad=requires_grad)
else:
image = Variable(image, requires_grad=requires_grad)
return image
model = models.vgg16(pretrained=True)
use_gpu = False
if torch.cuda.is_available():
use_gpu = True
#print(model)
for param in model.parameters():
param.requires_grad = False
if use_gpu:
print("Using CUDA")
model.cuda()
def octaver_fn(model, base_img, step_fn, octave_n=6, octave_scale=1.4, iter_n=10, **step_args):
octaves = [base_img]#list of octaves with base image as the first argument
for i in range(octave_n - 1):#number of octaves that are to be applied
octaves.append(nd.zoom(octaves[-1], (1, 1, 1.0 / octave_scale, 1.0 / octave_scale), order=1))
detail = np.zeros_like(octaves[-1])#Initializes a detail image with zeros, having the same shape as the last octave image in octaves list
for octave, octave_base in enumerate(octaves[::-1]):#octaves list is reversed and then enumerated
h, w = octave_base.shape[-2:]#second last and last element in the shape of the enumerating object
if octave > 0:
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1, 1.0 * h / h1, 1.0 * w / w1), order=1)#resize detail image
src = octave_base + detail
for i in range(iter_n):
src = step_fn(model, src, **step_args)
detail = src.numpy() - octave_base#modified image - current base , no more zeros
return src
def objective(dst, guide_features):#return the objective image we need for further operations
if guide_features is None:
return dst.data
else:
x = dst.data[0].cpu().numpy()
y = guide_features.data[0].cpu().numpy()
ch, w, h = x.shape
x = x.reshape(ch, -1)
y = y.reshape(ch, -1)
A = x.T.dot(y)
diff = y[:, A.argmax(1)]
diff = torch.Tensor(np.array([diff.reshape(ch, w, h)])).cuda()
return diff
def make_step(model, img, objective=objective, control=None, step_size=1.5, end=28, jitter=32):
global use_gpu
mean = np.array([0.485, 0.456, 0.406]).reshape([3, 1, 1])
std = np.array([0.229, 0.224, 0.225]).reshape([3, 1, 1])
#introducing a randomness in picture to avoid local minimas
ox, oy = np.random.randint(-jitter, jitter+1, 2)
img = np.roll(np.roll(img, ox, -1), oy, -2)
#preparing for grad ascent
tensor = torch.Tensor(img)
img_var = image_to_variable(tensor, requires_grad=True, cuda=use_gpu)
model.zero_grad()
#Forward Pass through the Model
x = img_var
for index, layer in enumerate(model.features.children()):
x = layer(x)
if index == end:
break
delta = objective(x, control)
x.backward(delta)#we calc loss wrt a custom objective function
#L2 Regularization on gradients
mean_square = torch.Tensor([torch.mean(img_var.grad.data ** 2)])
if use_gpu:
mean_square = mean_square.cuda()
img_var.grad.data /= torch.sqrt(mean_square)#scaling
img_var.data.add_(img_var.grad.data * step_size)#updating image
result = img_var.data.cpu().numpy()
result = np.roll(np.roll(result, -ox, -1), -oy, -2)#reverse jitter effect
result[0, :, :, :] = np.clip(result[0, :, :, :], -mean / std, (1 - mean) / std)#clipping
showtensor(result)
return torch.Tensor(result)
def deepdream(model, base_img, octave_n=6, octave_scale=1.4,
iter_n=10, end=28, control=None, objective=objective,
step_size=1.5, jitter=32):
return octaver_fn(
model, base_img, step_fn=make_step,
octave_n=octave_n, octave_scale=octave_scale,
iter_n=iter_n, end=end, control=control,
objective=objective, step_size=step_size, jitter=jitter
)
# input_img, input_tensor, input_np = load_image('IMG_20201204_125738.jpg')
# dream = deepdream(model, input_np, end=14, step_size=0.06, octave_n=6)
# dream = tensor_to_img(dream)
# dream.save('dream00.jpg')
# dream
st.title('Deep Dream Generator')
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
try:
image = PILImage.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
# Get user input for end value
end_value = st.slider('End Value', min_value=0, max_value=50, value=14, step=1)
octave_value=st.slider('Scaling factor',min_value=3,max_value=10,value=6,step=1)
# Generate deep dream
if st.button('Generate Deep Dream'):
img, img_tensor, img_np = load_image(uploaded_file)
dream = deepdream(model, img_np, end=end_value, step_size=0.06, octave_n=octave_value)
dream_img = tensor_to_img(dream)
st.image(dream_img, caption='Generated Deep Dream Image.', use_column_width=True)
except PIL.UnidentifiedImageError:
st.error("Unable to open the uploaded image. Please make sure it is a valid image file.")
st.text("Made with love by Abhinav")