Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from model import Generator | |
import torchvision.utils as vutils | |
import os | |
from math import log2 | |
# Function to generate images | |
def generate_images(): | |
Z_DIM = 256 | |
IN_CHANNELS = 256 | |
# Load pretrained generator weights | |
checkpoint = torch.load("generator.pth", map_location=torch.device('cpu')) | |
# Filter out optimizer-related keys | |
state_dict = checkpoint['state_dict'] | |
# Load the filtered state dictionary into the model | |
generator = Generator(Z_DIM, IN_CHANNELS, img_channels=3) | |
generator.load_state_dict(state_dict) | |
generator.eval() | |
# Set output directory | |
output_dir = "generated_images" | |
os.makedirs(output_dir, exist_ok=True) | |
# Generate images | |
img_sizes = [256] | |
images = [] | |
for img_size in img_sizes: | |
num_steps = int(log2(img_size / 4)) | |
x = torch.randn((6, Z_DIM, 1, 1)) # Generate a batch of 6 images | |
with torch.no_grad(): | |
z = generator(x, alpha=0.5, steps=num_steps) | |
# Normalize the generated images to the range [-1, 1] | |
z = (z + 1) / 2 | |
assert z.shape == (6, 3, img_size, img_size) | |
# Append generated images to the list | |
for i in range(6): | |
images.append(z[i].detach()) | |
return images | |
# Main function to create Streamlit web app | |
def main(): | |
st.title('Image Generation with pro-gan 🤖') | |
st.write("Click the buttons below to generate images.") | |
st.write("Trained on CelebHQ dataset.") | |
# Prompt message about image size | |
st.write("Note: Due to limited resources, the model has been trained to generate 256x256 size images. They are still awesome!") | |
# Generate images on button click | |
if st.button('Generate Images'): | |
images = generate_images() | |
# Display the generated images | |
for i, image in enumerate(images): | |
st.image(image.permute(1, 2, 0).cpu().numpy(), caption=f'Generated Image {i+1}', use_column_width=True) | |
if __name__ == '__main__': | |
main() | |