Abhinav Jangra commited on
Commit
75f6b3f
1 Parent(s): 136d7b4

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pickle
3
+ import string
4
+ from nltk.corpus import stopwords
5
+ import nltk
6
+ nltk.download('punkt')
7
+ nltk.download('stopwords')
8
+
9
+
10
+ from nltk.stem.porter import PorterStemmer
11
+
12
+ ps=PorterStemmer()
13
+
14
+
15
+
16
+
17
+ def transform_text(text):
18
+ text=text.lower()
19
+ text=nltk.word_tokenize(text)
20
+
21
+ y=[]
22
+ for i in text:
23
+ if i.isalnum():
24
+ y.append(i)
25
+
26
+ text=y[:]
27
+ y.clear()
28
+
29
+ for i in text:
30
+ if i not in stopwords.words('english') and i not in string.punctuation:
31
+ y.append(i)
32
+
33
+ text=y[:]
34
+ y.clear()
35
+
36
+ for i in text:
37
+ y.append(ps.stem(i))
38
+
39
+
40
+ return " ".join(y)
41
+
42
+
43
+
44
+ tfidf=pickle.load(open('vectorizer.pkl','rb'))
45
+ model=pickle.load(open('model.pkl','rb'))
46
+
47
+ st.title("EMAIL/SMS SPAM CLASSIFIER")
48
+
49
+ #follow documentation for syntax and fn
50
+
51
+ input_sms=st.text_input("Enter the message :)")
52
+
53
+ if st.button('predict'):
54
+
55
+ #1.preprocess
56
+ transformed_sms=transform_text(input_sms)
57
+ #2.vectorize
58
+ vector_input=tfidf.transform([transformed_sms])
59
+ #3.predict
60
+ result=model.predict(vector_input)[0]
61
+ #4.display
62
+
63
+ if result==1:
64
+ st.header("make some friends loner")
65
+
66
+ else:
67
+ st.header("not spam uwu")
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+