File size: 10,786 Bytes
bd27f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved

from typing import Tuple

import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import ImageList

from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher


@META_ARCH_REGISTRY.register()
class MaskFormer(nn.Module):
    """
    Main class for mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        criterion: nn.Module,
        num_queries: int,
        panoptic_on: bool,
        object_mask_threshold: float,
        overlap_threshold: float,
        metadata,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            num_queries: int, number of queries
            panoptic_on: bool, whether to output panoptic segmentation prediction
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.criterion = criterion
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.panoptic_on = panoptic_on
        self.object_mask_threshold = object_mask_threshold
        self.metadata = metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
        self.register_buffer(
            "pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False
        )
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())

        # Loss parameters:
        deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
        dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
        mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT

        # building criterion
        matcher = HungarianMatcher(
            cost_class=1,
            cost_mask=mask_weight,
            cost_dice=dice_weight,
        )

        weight_dict = {"loss_ce": 1, "loss_mask": mask_weight, "loss_dice": dice_weight}
        if deep_supervision:
            dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        losses = ["labels", "masks"]

        criterion = SetCriterion(
            sem_seg_head.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
        )

        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "criterion": criterion,
            "num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
            "panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
            "object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
            "overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
            "metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
            "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
            "sem_seg_postprocess_before_inference": (
                cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
                or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
            ),
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features)

        if self.training:
            # mask classification target
            if "instances" in batched_inputs[0]:
                gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
                targets = self.prepare_targets(gt_instances, images)
            else:
                targets = None

            # bipartite matching-based loss
            losses = self.criterion(outputs, targets)

            for k in list(losses.keys()):
                if k in self.criterion.weight_dict:
                    losses[k] *= self.criterion.weight_dict[k]
                else:
                    # remove this loss if not specified in `weight_dict`
                    losses.pop(k)

            return losses
        else:
            mask_cls_results = outputs["pred_logits"]
            mask_pred_results = outputs["pred_masks"]
            # upsample masks
            mask_pred_results = F.interpolate(
                mask_pred_results,
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bilinear",
                align_corners=False,
            )

            processed_results = []
            for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
                mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
            ):
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])

                if self.sem_seg_postprocess_before_inference:
                    mask_pred_result = sem_seg_postprocess(
                        mask_pred_result, image_size, height, width
                    )

                # semantic segmentation inference
                r = self.semantic_inference(mask_cls_result, mask_pred_result)
                if not self.sem_seg_postprocess_before_inference:
                    r = sem_seg_postprocess(r, image_size, height, width)
                processed_results.append({"sem_seg": r})

                # panoptic segmentation inference
                if self.panoptic_on:
                    panoptic_r = self.panoptic_inference(
                        mask_cls_result, mask_pred_result
                    )
                    processed_results[-1]["panoptic_seg"] = panoptic_r

            return processed_results

    def prepare_targets(self, targets, images):
        h, w = images.tensor.shape[-2:]
        new_targets = []
        for targets_per_image in targets:
            # pad gt
            gt_masks = targets_per_image.gt_masks
            padded_masks = torch.zeros(
                (gt_masks.shape[0], h, w), dtype=gt_masks.dtype, device=gt_masks.device
            )
            padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
            new_targets.append(
                {
                    "labels": targets_per_image.gt_classes,
                    "masks": padded_masks,
                }
            )
        return new_targets

    def semantic_inference(self, mask_cls, mask_pred):
        mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = mask_pred.sigmoid()
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg