File size: 7,665 Bytes
297e244
 
 
 
 
 
 
 
 
 
 
6f27821
 
297e244
 
 
 
 
 
 
cbf5820
 
 
a4107b1
175fc0f
297e244
 
 
 
175fc0f
 
 
 
297e244
 
daad6da
 
 
 
f138a14
6f27821
daad6da
 
 
 
297e244
 
 
 
 
 
 
 
a4107b1
297e244
 
 
 
a4107b1
297e244
 
a4107b1
297e244
 
 
 
 
 
 
 
 
 
 
 
a4107b1
 
daad6da
297e244
 
 
 
daad6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4107b1
297e244
56eee40
 
 
 
 
 
 
6f27821
a4107b1
 
 
 
 
 
 
 
 
 
6f27821
78e8beb
a4107b1
daad6da
 
 
 
297e244
 
 
7d96516
1be831a
 
f138a14
 
 
297e244
 
 
 
daad6da
 
297e244
 
 
daad6da
297e244
 
 
 
 
 
 
 
 
 
 
8f3fe0f
297e244
 
daad6da
 
297e244
 
 
a4107b1
daad6da
 
6f27821
daad6da
 
 
 
 
6f27821
daad6da
 
 
 
 
 
 
8f3fe0f
daad6da
 
f138a14
 
6f27821
 
f138a14
6f27821
 
 
daad6da
 
 
 
 
 
6f27821
f138a14
 
6f27821
 
297e244
4cba436
daad6da
 
297e244
 
 
 
a4107b1
 
 
 
cbf5820
a4107b1
cbf5820
a4107b1
 
cbf5820
daad6da
 
 
 
a4107b1
297e244
 
 
4cba436
297e244
 
 
a4107b1
 
 
297e244
 
 
 
 
 
daad6da
 
297e244
8f3fe0f
 
297e244
 
daad6da
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import tempfile
import re
import librosa
import torch
import json
import numpy as np

from transformers import Wav2Vec2ForCTC, AutoProcessor
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
from utils.text_norm import text_normalize
from utils.lm import create_unigram_lm, maybe_generate_pseudo_bigram_arpa

uroman_dir = "uroman"
assert os.path.exists(uroman_dir)
UROMAN_PL = os.path.join(uroman_dir, "bin", "uroman.pl")

ASR_SAMPLING_RATE = 16_000

WORD_SCORE_DEFAULT_IF_LM = -0.18
WORD_SCORE_DEFAULT_IF_NOLM = -3.5
LM_SCORE_DEFAULT = 1.48

MODEL_ID = "mms-meta/mms-zeroshot-300m"

processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

token_file = hf_hub_download(
    repo_id=MODEL_ID,
    filename="tokens.txt",
)


class MY_LOG:
    def __init__(self):
        self.text = "[START]"

    def add(self, new_log, new_line=True):
        self.text = self.text + ("\n" if new_line else " ") + new_log
        self.text = self.text.strip()
        return self.text


def error_check_file(filepath):
    if not isinstance(filepath, str):
        return "Expected file to be of type 'str'. Instead got {}".format(
            type(filepath)
        )
    if not os.path.exists(filepath):
        return "Input file '{}' doesn't exists".format(type(filepath))


def norm_uroman(text):
    text = text.lower()
    text = text.replace("’", "'")
    text = re.sub("([^a-z' ])", " ", text)
    text = re.sub(" +", " ", text)
    return text.strip()


def uromanize(words):
    iso = "xxx"
    with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
        with open(tf.name, "w") as f:
            f.write("\n".join(words))
        cmd = f"perl " + UROMAN_PL
        cmd += f" -l {iso} "
        cmd += f" < {tf.name} > {tf2.name}"
        os.system(cmd)
        lexicon = {}
        with open(tf2.name) as f:
            for idx, line in enumerate(f):
                if not line.strip():
                    continue
                line = re.sub(r"\s+", "", norm_uroman(line)).strip()
                lexicon[words[idx]] = " ".join(line) + " |"
    return lexicon


def filter_lexicon(lexicon, word_counts):
    spelling_to_words = {}
    for w, s in lexicon.items():
        spelling_to_words.setdefault(s, [])
        spelling_to_words[s].append(w)

    lexicon = {}
    for s, ws in spelling_to_words.items():
        if len(ws) > 1:
            # use the word which has higest counts, fewed additional characters
            ws.sort(key=lambda w: (-word_counts[w], len(w)))
        lexicon[ws[0]] = s
    return lexicon


def load_words(filepath):
    words = {}
    with open(filepath) as f:
        lines = f.readlines()
    num_sentences = len(lines)
    all_sentences = " ".join([l.strip() for l in lines])
    norm_all_sentences = text_normalize(all_sentences)
    for w in norm_all_sentences.split():
        words.setdefault(w, 0)
        words[w] += 1
    return words, num_sentences


def process(
    audio_data,
    words_file,
    lm_path=None,
    wscore=None,
    lmscore=None,
    wscore_usedefault=True,
    lmscore_usedefault=True,
    autolm=True,
    reference=None,
):
    transcription, logs = "", MY_LOG()
    if not audio_data or not words_file:
        yield "ERROR: Empty audio data or words file", logs.text
        return
    if isinstance(audio_data, tuple):
        # microphone
        sr, audio_samples = audio_data
        audio_samples = (audio_samples / 32768.0).astype(float)

        if sr != ASR_SAMPLING_RATE:
            audio_samples = librosa.resample(
                audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE
            )
    else:
        # file upload
        assert isinstance(audio_data, str)
        audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
    yield transcription, logs.add(f"Number of audio samples: {len(audio_samples)}")

    inputs = processor(
        audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
    )

    # set device
    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif (
        hasattr(torch.backends, "mps")
        and torch.backends.mps.is_available()
        and torch.backends.mps.is_built()
    ):
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    #device = torch.device("cpu")
    model.to(device)
    inputs = inputs.to(device)
    yield transcription, logs.add(f"Using device: {device}")

    with torch.no_grad():
        outputs = model(**inputs).logits

    # Setup lexicon and decoder
    yield transcription, logs.add(f"Loading words....")
    try:
        word_counts, num_sentences = load_words(words_file)
    except Exception as e:
        yield f"ERROR: Loading words failed '{str(e)}'", logs.text
        return

    yield transcription, logs.add(
        f"Loaded {len(word_counts)} words from {num_sentences} lines.\nPreparing lexicon...."
    )

    try:
        lexicon = uromanize(list(word_counts.keys()))
    except Exception as e:
        yield f"ERROR: Creating lexicon failed '{str(e)}'", logs.text
        return

    yield transcription, logs.add(f"Leixcon size: {len(lexicon)}")

    # Input could be sentences OR list of words. Check if atleast one word has a count > 1 to diffentiate
    tmp_file = tempfile.NamedTemporaryFile()  # could be used for LM
    if autolm and any([cnt > 2 for cnt in word_counts.values()]):
        yield transcription, logs.add(f"Creating unigram LM...", False)
        lm_path = tmp_file.name
        create_unigram_lm(word_counts, num_sentences, lm_path)
        yield transcription, logs.add(f"OK")

    if lm_path is None:
        yield transcription, logs.add(f"Filtering lexicon....")
        lexicon = filter_lexicon(lexicon, word_counts)
        yield transcription, logs.add(
            f"Ok. Leixcon size after filtering: {len(lexicon)}"
        )
    else:
        # kenlm throws an error if unigram LM is being used
        # HACK: generate a bigram LM from unigram LM and a dummy bigram to trick it
        maybe_generate_pseudo_bigram_arpa(lm_path)

    with tempfile.NamedTemporaryFile() as lexicon_file:
        if lm_path is not None and not lm_path.strip():
            lm_path = None

        with open(lexicon_file.name, "w") as f:
            idx = 10
            for word, spelling in lexicon.items():
                f.write(word + " " + spelling + "\n")
                idx += 1

        if wscore_usedefault:
            wscore = (
                WORD_SCORE_DEFAULT_IF_LM
                if lm_path is not None
                else WORD_SCORE_DEFAULT_IF_NOLM
            )
        if lmscore_usedefault:
            lmscore = LM_SCORE_DEFAULT if lm_path is not None else 0

        yield transcription, logs.add(
            f"Using word score: {wscore}\nUsing lm score: {lmscore}"
        )

        beam_search_decoder = ctc_decoder(
            lexicon=lexicon_file.name,
            tokens=token_file,
            lm=lm_path,
            nbest=1,
            beam_size=500,
            beam_size_token=50,
            lm_weight=lmscore,
            word_score=wscore,
            sil_score=0,
            blank_token="<s>",
        )

        beam_search_result = beam_search_decoder(outputs.to("cpu"))
        transcription = " ".join(beam_search_result[0][0].words).strip()

    yield transcription, logs.add(f"[DONE]")


# for i in process("upload/english/english.mp3", "upload/english/c4_5k_sentences.txt"):
#     print(i)


# for i in process("upload/ligurian/ligurian_1.mp3", "upload/ligurian/zenamt_5k_sentences.txt"):
#     print(i)