|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import pickle |
|
import json |
|
|
|
|
|
|
|
with open('list_num_cols.txt', 'r') as file_1: |
|
list_num_col = json.load(file_1) |
|
|
|
with open('list_cat_cols.txt', 'r') as file_2: |
|
list_cat_col = json.load(file_2) |
|
|
|
with open('model_scaler.pkl', 'rb') as file_3: |
|
model_scaler = pickle.load(file_3) |
|
|
|
with open('model_encoder.pkl', 'rb') as file_4: |
|
model_encoder = pickle.load(file_4) |
|
|
|
with open('model_lin_reg.pkl', 'rb') as file_5: |
|
model_lin_reg = pickle.load(file_5) |
|
|
|
def run(): |
|
|
|
with st.form('form_fifa_2022'): |
|
|
|
name = st.text_input('Name', value = '') |
|
|
|
age = st.number_input('Age', min_value = 16, max_value = 60, value = 25, step = 1, help = 'Usia Pemain') |
|
|
|
height = st.slider('Height', 100, 250, 170) |
|
|
|
weight = st.number_input('weight', 50, 150, 70) |
|
|
|
price = st.number_input('Price', value = 0) |
|
|
|
st.markdown('----') |
|
|
|
|
|
attacking_work_rate = st.selectbox('Attacking Work Rate', ('Low', 'Medium', 'High'), index = 1) |
|
|
|
devensive_work_rate = st.selectbox('Devensive Work Rate', ('Low', 'Medium', 'High'), index = 1) |
|
|
|
pace_total = st.number_input('Pace', min_value = 0, max_value=100, value = 50) |
|
|
|
shooting_total = st.number_input('Shooting', min_value = 0, max_value=100, value = 50) |
|
|
|
passing_total = st.number_input('Passing', min_value = 0, max_value=100, value = 50) |
|
|
|
dribbling_total = st.number_input('Dribbling', min_value = 0, max_value=100, value = 50) |
|
|
|
defending_total = st.number_input('Defending', min_value = 0, max_value=100, value = 50) |
|
|
|
physicality = st.number_input('Physicality', min_value = 0, max_value=100, value = 50) |
|
|
|
|
|
submitted = st.form_submit_button('Predict') |
|
|
|
|
|
data_inf = { |
|
'Name' : name, |
|
'Age' : age, |
|
'Height' : height, |
|
'Weight' : weight, |
|
'Price' : price, |
|
'AttackingWorkRate' : attacking_work_rate, |
|
'DefensiveWorkRate' : devensive_work_rate, |
|
'PaceTotal' :pace_total, |
|
'ShootingTotal': shooting_total, |
|
'PassingTotal' : passing_total, |
|
'DribblingTotal' :dribbling_total, |
|
'DefendingTotal' :defending_total, |
|
'PhysicalityTotal':physicality, |
|
} |
|
|
|
data_inf = pd.DataFrame([data_inf]) |
|
st.dataframe(data_inf) |
|
|
|
|
|
|
|
if submitted: |
|
|
|
data_inf_num = data_inf[list_num_col] |
|
data_inf_cat = data_inf[list_cat_col] |
|
|
|
|
|
data_inf_num_scaled = model_scaler.transform(data_inf_num) |
|
data_inf_cat_encoded = model_encoder.transform(data_inf_cat) |
|
data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis = 1) |
|
|
|
|
|
y_pred_inf = model_lin_reg.predict(data_inf_final) |
|
|
|
st.write('## Rating : ', str(int(y_pred_inf))) |
|
|
|
if __name__ == '__main__': |
|
run() |