import streamlit as st import pandas as pd import numpy as np import pickle import json #Load All Files with open('list_num_cols.txt', 'r') as file_1: list_num_col = json.load(file_1) with open('list_cat_cols.txt', 'r') as file_2: list_cat_col = json.load(file_2) with open('model_scaler.pkl', 'rb') as file_3: model_scaler = pickle.load(file_3) with open('model_encoder.pkl', 'rb') as file_4: model_encoder = pickle.load(file_4) with open('model_lin_reg.pkl', 'rb') as file_5: model_lin_reg = pickle.load(file_5) def run(): with st.form('form_fifa_2022'): #Field Nama name = st.text_input('Name', value = '') #Field Umur age = st.number_input('Age', min_value = 16, max_value = 60, value = 25, step = 1, help = 'Usia Pemain') #Field Tinggi badan height = st.slider('Height', 100, 250, 170) #Field Weight weight = st.number_input('weight', 50, 150, 70) #field price price = st.number_input('Price', value = 0) st.markdown('----') #Field Attacking Work Rate attacking_work_rate = st.selectbox('Attacking Work Rate', ('Low', 'Medium', 'High'), index = 1) #Field Defensive Work Rate devensive_work_rate = st.selectbox('Devensive Work Rate', ('Low', 'Medium', 'High'), index = 1) #Field Pace Total pace_total = st.number_input('Pace', min_value = 0, max_value=100, value = 50) #Field Shooting Total shooting_total = st.number_input('Shooting', min_value = 0, max_value=100, value = 50) #Field Passing Total passing_total = st.number_input('Passing', min_value = 0, max_value=100, value = 50) #Field Dribbling Total dribbling_total = st.number_input('Dribbling', min_value = 0, max_value=100, value = 50) #Field Defending Total defending_total = st.number_input('Defending', min_value = 0, max_value=100, value = 50) #Field Physicality Total physicality = st.number_input('Physicality', min_value = 0, max_value=100, value = 50) #bikin submit button submitted = st.form_submit_button('Predict') #Inference data_inf = { 'Name' : name, 'Age' : age, 'Height' : height, 'Weight' : weight, 'Price' : price, 'AttackingWorkRate' : attacking_work_rate, 'DefensiveWorkRate' : devensive_work_rate, 'PaceTotal' :pace_total, 'ShootingTotal': shooting_total, 'PassingTotal' : passing_total, 'DribblingTotal' :dribbling_total, 'DefendingTotal' :defending_total, 'PhysicalityTotal':physicality, } data_inf = pd.DataFrame([data_inf]) st.dataframe(data_inf) #Logic ketika predic button ditekan if submitted: #split between numerical and categorical columns data_inf_num = data_inf[list_num_col] data_inf_cat = data_inf[list_cat_col] #Scaling & Encoding data_inf_num_scaled = model_scaler.transform(data_inf_num) data_inf_cat_encoded = model_encoder.transform(data_inf_cat) data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis = 1) #predict using linear reg model y_pred_inf = model_lin_reg.predict(data_inf_final) st.write('## Rating : ', str(int(y_pred_inf))) if __name__ == '__main__': run()