mobrown's picture
Update app.py
280021e verified
import gradio as gr
from transformers import pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn import metrics
import pandas as pd
from transformers.utils import logging
logging.set_verbosity("ERROR")
# Load the provided dataset
file_path = 'data.csv'
df = pd.read_csv(file_path)
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(df['Sentence'], df['Sentiment'], test_size=0.2, random_state=42)
# Define models
nb_model = make_pipeline(TfidfVectorizer(), MultinomialNB())
svm_model = make_pipeline(TfidfVectorizer(), SVC(probability=True))
rf_model = make_pipeline(TfidfVectorizer(), RandomForestClassifier())
# Train models
nb_model.fit(X_train, y_train)
svm_model.fit(X_train, y_train)
rf_model.fit(X_train, y_train)
# Define sentences to choose from
sentences = [
"The announced restructuring will erase the company's indebtedness.",
"UPM-Kymmene upgraded to `in-line' from `underperform' by Goldman Sachs.",
"Profitability (in EBIT %) was not impressive due to expenses rising by 14.3%.",
"The Finnish bank has issued a profit warning.",
"TeliaSonera's underlying results however included 457 mln SKr in positive one-offs, hence the adjusted underlying EBITDA actually amounts to 7.309 bln SKr, clearly below expectations, analysts said."
]
# Function to map BERT labels
def map_bert_label(label):
if label in ["1 star", "2 stars"]:
return "negative"
elif label == "3 stars":
return "neutral"
elif label in ["4 stars", "5 stars"]:
return "positive"
# Function to analyze sentiment
def analyze_sentiment(sentence):
# Define model paths
model_paths = {
"BERT": "nlptown/bert-base-multilingual-uncased-sentiment",
}
# Analyze sentiment using transformers models
results = {}
for model_name, model_path in model_paths.items():
sentiment_analyzer = pipeline("sentiment-analysis", model=model_path)
result = sentiment_analyzer(sentence[:512])[0] # Analyze first 512 characters for brevity
if model_name == "BERT":
result['label'] = map_bert_label(result['label'])
results[model_name] = result
# Analyze sentiment using sklearn models
results["Naive Bayes"] = {"label": nb_model.predict([sentence])[0],
"score": nb_model.predict_proba([sentence]).max()}
results["SVM"] = {"label": svm_model.predict([sentence])[0],
"score": svm_model.predict_proba([sentence]).max()}
results["Random Forest"] = {"label": rf_model.predict([sentence])[0],
"score": rf_model.predict_proba([sentence]).max()}
return sentence, results
# Define custom CSS with slightly larger font size
custom_css = """
.gradio-container, .gradio-container * {
font-size: 0.65rem !important;
}
.gradio-container h1 {
font-size: 1.1rem !important;
}
.gradio-container h2, .gradio-container h3 {
font-size: 0.9rem !important;
}
.gradio-container .label {
font-size: 0.75rem !important;
}
.gradio-container .output-markdown pre {
font-size: 0.6rem !important;
}
"""
# Create Gradio interface with custom CSS
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Compare Sentiment Analysis Across Models")
gr.Markdown("Select a sentence to see sentiment analysis results from multiple models.")
dropdown = gr.Dropdown(choices=sentences, label="Select Sentence")
text_output = gr.Textbox(label="Selected Sentence", lines=2)
sentiment_output = gr.JSON(label="Sentiment Scores")
dropdown.change(analyze_sentiment, inputs=[dropdown], outputs=[text_output, sentiment_output])
demo.launch()