import numpy as np from sklearn.decomposition import PCA import gensim.downloader as api import gradio as gr import plotly.graph_objects as go # Load the Word2Vec model model = api.load("word2vec-google-news-300") def gensim_analogy(model, word1, word2, word3): try: result = model.most_similar(positive=[word2, word3], negative=[word1], topn=1) return result[0][0] # Return the word except KeyError as e: return str(e) def plot_words_plotly(model, words): vectors = np.array([model[word] for word in words if word in model.key_to_index]) # Reduce dimensions to 2D for plotting pca = PCA(n_components=2) vectors_2d = pca.fit_transform(vectors) # Create a scatter plot fig = go.Figure() # Add scatter points for each word vector for word, vec in zip(words, vectors_2d): fig.add_trace(go.Scatter(x=[vec[0]], y=[vec[1]], text=[word], mode='markers+text', textposition="bottom center", name=word)) fig.update_layout(title="Visualization of Word Vectors", xaxis_title="PCA 1", yaxis_title="PCA 2", showlegend=True, width=600, # Adjust width as needed height=400) # Adjust height as needed return fig def gradio_interface(choice, custom_input): if choice == "Custom": if not custom_input or len(custom_input.split(", ")) != 3: return "Invalid input. Please enter exactly three words, separated by commas.", None, { "error": "Invalid input"} words = custom_input.split(", ") else: if not choice: return "Invalid input. Please select or enter words.", None, { "error": "Invalid input"} words = choice.split(", ") word1, word2, word3 = words word4 = gensim_analogy(model, word1, word2, word3) plot_fig = plot_words_plotly(model, [word1, word2, word3, word4]) if word4 in model.key_to_index: vector = model[word4] vector_display = f"{word4}: {np.round(vector, 2).tolist()}" else: vector_display = "Vector not available for the resulting word" return word4, plot_fig, vector_display choices = [ "man, king, woman", "Paris, France, London", "strong, stronger, weak", "pork, pig, beef", "Custom" ] def clear_inputs(): return "", "", "", "", None # Define the layout using Rows and Columns with gr.Blocks() as iface: with gr.Row(): with gr.Column(): gr.Markdown("# Word Analogy and Vector Visualization") gr.Markdown( "Select a predefined triplet of words or choose 'Custom' and enter your own (comma-separated) to find a fourth word by analogy, and see their vectors plotted with Plotly.") radio = gr.Radio(choices=choices, label="Choose predefined words or enter custom words") custom_words = gr.Textbox( label="Custom words (comma-separated, required for custom choice; use only if 'Custom' is selected)", placeholder="Enter 3 words separated by commas") with gr.Row(): clear_btn = gr.Button("Clear") submit_btn = gr.Button("Submit") output_word = gr.Textbox(label="Output Word") word_plot = gr.Plot(label="Word Vectors Visualization") with gr.Row(): word_vectorization = gr.Textbox(label="Vectorization of the Output Word", lines=4, max_lines=4) clear_btn.click(fn=clear_inputs, inputs=None, outputs=[radio, custom_words, output_word, word_vectorization, word_plot]) submit_btn.click(fn=gradio_interface, inputs=[radio, custom_words], outputs=[output_word, word_plot, word_vectorization]) iface.launch(share=True)