Spaces:
Runtime error
Runtime error
mohamedalcafory
commited on
Commit
•
121c906
1
Parent(s):
ad4f152
update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,101 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
4 |
+
|
5 |
+
# Set model_kwargs with trust_remote_code=True
|
6 |
+
embeddings = SentenceTransformerEmbeddings(
|
7 |
+
model_name="nomic-ai/nomic-embed-text-v1.5",
|
8 |
+
model_kwargs={"trust_remote_code": True}
|
9 |
+
)
|
10 |
+
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
13 |
+
from langchain.document_loaders import TextLoader, PyPDFLoader
|
14 |
+
|
15 |
+
loader = PyPDFLoader("https://www.versusarthritis.org/media/24901/fibromyalgia-information-booklet-july2021.pdf")
|
16 |
+
documents = loader.load()
|
17 |
+
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
19 |
+
docs = text_splitter.split_documents(documents)
|
20 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
21 |
+
retriever = vector_store.as_retriever()
|
22 |
+
|
23 |
+
from langchain import hub
|
24 |
+
from langchain_core.output_parsers import StrOutputParser
|
25 |
+
from langchain_core.runnables import RunnablePassthrough
|
26 |
+
|
27 |
+
prompt = hub.pull("rlm/rag-prompt")
|
28 |
+
|
29 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("mohamedalcafory/PubMed_Llama3.1_Based_model")
|
31 |
+
model = AutoModelForCausalLM.from_pretrained("mohamedalcafory/PubMed_Llama3.1_Based_model")
|
32 |
+
|
33 |
+
from transformers import pipeline
|
34 |
+
from langchain_huggingface import HuggingFacePipeline
|
35 |
+
pipe = pipeline(
|
36 |
+
"text-generation",
|
37 |
+
model=model,
|
38 |
+
tokenizer=tokenizer,
|
39 |
+
max_new_tokens=512,
|
40 |
+
temperature=0.7,
|
41 |
+
top_p=0.95,
|
42 |
+
repetition_penalty=1.15
|
43 |
+
)
|
44 |
+
|
45 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
46 |
+
|
47 |
+
prompt = PromptTemplate(
|
48 |
+
input_variables=["query"],
|
49 |
+
template="{query}"
|
50 |
+
)
|
51 |
+
|
52 |
+
# Define the retrieval chain
|
53 |
+
retrieve_docs = (lambda x: retriever.get_relevant_documents(x["query"]))
|
54 |
+
|
55 |
+
# Define the generator chain
|
56 |
+
generator_chain = (
|
57 |
+
prompt
|
58 |
+
| llm
|
59 |
+
| StrOutputParser()
|
60 |
)
|
61 |
|
62 |
+
def format_docs(docs):
|
63 |
+
# Check if docs is a list of Document objects or just strings
|
64 |
+
if docs and hasattr(docs[0], 'page_content'):
|
65 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
66 |
+
else:
|
67 |
+
return "\n\n".join(str(doc) for doc in docs)
|
68 |
+
|
69 |
+
# Create the full RAG chain
|
70 |
+
rag_chain = (
|
71 |
+
RunnablePassthrough.assign(context=retrieve_docs)
|
72 |
+
| RunnablePassthrough.assign(
|
73 |
+
formatted_context=lambda x: format_docs(x["context"])
|
74 |
+
)
|
75 |
+
| prompt
|
76 |
+
| llm
|
77 |
+
| StrOutputParser()
|
78 |
+
)
|
79 |
+
|
80 |
+
def process_query(query):
|
81 |
+
try:
|
82 |
+
response = rag_chain.invoke({"query": query})
|
83 |
+
return response
|
84 |
+
except Exception as e:
|
85 |
+
return f"An error occurred: {str(e)}"
|
86 |
+
|
87 |
+
# Create Gradio interface
|
88 |
+
demo = gr.Interface(
|
89 |
+
fn=process_query,
|
90 |
+
inputs=gr.Textbox(label= "Your question", lines=2, placeholder="Enter your question here..."),
|
91 |
+
outputs=gr.Textbox(label="Response"),
|
92 |
+
title="Fibromyalgia Q&A Assistant",
|
93 |
+
description="Ask questions and get answers based on the retrieved context.",
|
94 |
+
examples=[
|
95 |
+
["How does Physiotherapy work with Fibromyalgia?"],
|
96 |
+
["What are the common treatments for chronic pain?"],
|
97 |
+
]
|
98 |
+
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
demo.launch()
|