mohamedalcafory commited on
Commit
bfecf10
1 Parent(s): cd66f46

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -1
app.py CHANGED
@@ -8,27 +8,32 @@ embeddings = SentenceTransformerEmbeddings(
8
  model_kwargs={"trust_remote_code": True}
9
  )
10
 
 
 
11
  from langchain_community.vectorstores import FAISS
12
  from langchain_text_splitters import RecursiveCharacterTextSplitter
13
  from langchain.document_loaders import TextLoader, PyPDFLoader
14
 
15
  loader = PyPDFLoader("https://www.versusarthritis.org/media/24901/fibromyalgia-information-booklet-july2021.pdf")
16
  documents = loader.load()
17
-
18
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
19
  docs = text_splitter.split_documents(documents)
20
  vector_store = FAISS.from_documents(docs, embeddings)
21
  retriever = vector_store.as_retriever()
22
 
 
 
23
  from langchain import hub
24
  from langchain_core.output_parsers import StrOutputParser
25
  from langchain_core.runnables import RunnablePassthrough
26
 
27
  prompt = hub.pull("rlm/rag-prompt")
 
28
 
29
  from transformers import AutoTokenizer, AutoModelForCausalLM
30
  tokenizer = AutoTokenizer.from_pretrained("mohamedalcafory/PubMed_Llama3.1_Based_model")
31
  model = AutoModelForCausalLM.from_pretrained("mohamedalcafory/PubMed_Llama3.1_Based_model")
 
32
 
33
  from transformers import pipeline
34
  from langchain_huggingface import HuggingFacePipeline
 
8
  model_kwargs={"trust_remote_code": True}
9
  )
10
 
11
+ print('Embeddings loaded successfully')
12
+
13
  from langchain_community.vectorstores import FAISS
14
  from langchain_text_splitters import RecursiveCharacterTextSplitter
15
  from langchain.document_loaders import TextLoader, PyPDFLoader
16
 
17
  loader = PyPDFLoader("https://www.versusarthritis.org/media/24901/fibromyalgia-information-booklet-july2021.pdf")
18
  documents = loader.load()
 
19
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
20
  docs = text_splitter.split_documents(documents)
21
  vector_store = FAISS.from_documents(docs, embeddings)
22
  retriever = vector_store.as_retriever()
23
 
24
+ print('Retriever loaded successfully')
25
+
26
  from langchain import hub
27
  from langchain_core.output_parsers import StrOutputParser
28
  from langchain_core.runnables import RunnablePassthrough
29
 
30
  prompt = hub.pull("rlm/rag-prompt")
31
+ print(prompt)
32
 
33
  from transformers import AutoTokenizer, AutoModelForCausalLM
34
  tokenizer = AutoTokenizer.from_pretrained("mohamedalcafory/PubMed_Llama3.1_Based_model")
35
  model = AutoModelForCausalLM.from_pretrained("mohamedalcafory/PubMed_Llama3.1_Based_model")
36
+ print('Model loaded successfully')
37
 
38
  from transformers import pipeline
39
  from langchain_huggingface import HuggingFacePipeline