# Load model directly from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq import torchaudio import streamlit as st processor = AutoProcessor.from_pretrained("mohammed/whisper-small-arabic-cv-11") model = AutoModelForSpeechSeq2Seq.from_pretrained("mohammed/whisper-small-arabic-cv-11") st.title("Arabic Whisper model v2") audio_file = st.file_uploader("Upload audio", type=["mp3", "wav", "m4a"]) if st.sidebar.button("Trascribe Audio"): if audio_file is not None: st.sidebar.success("Transcribing audio") # on success audio file audio_tensor, sample_rate = torchaudio.load(audio_file) if sample_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) audio_tensor = resampler(audio_tensor) audio_np = audio_tensor.squeeze().numpy() # processing audio inputs = processor(audio_np, sample_rate=16000, return_tensors="pt") # generating transcript generated_ids = model.generate(inputs["input_features"]) transcription = processor.batch_decode(generated_ids, skip_special_tokens=True) # display transcription st.sidebar.success("Transcription is complete") st.text(transcription[0]) else: st.sidebar.error("Please upload a valid audio file")