File size: 17,074 Bytes
59dd739
c47c7dc
 
59dd739
55d47b9
 
 
c47c7dc
 
59dd739
 
 
55d47b9
c47c7dc
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47c7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d47b9
 
 
 
 
59dd739
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dd739
55d47b9
59dd739
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dd739
55d47b9
 
 
 
 
 
59dd739
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
c47c7dc
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import re
import argparse
import torch
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np
from data import load_tokenizer
from model import load_model
from datetime import datetime
from dateutil import parser
from demo_assets import *
from typing import List, Dict, Any

def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_dir', default='/data/mohamed/data')
    parser.add_argument('--aim_repo', default='/data/mohamed/')
    parser.add_argument('--ckpt', default='electra-base.pt')
    parser.add_argument('--aim_exp', default='mimic-decisions-1215')
    parser.add_argument('--label_encoding', default='multiclass')
    parser.add_argument('--multiclass', action='store_true')
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--save_losses', action='store_true')
    parser.add_argument('--task', default='token', choices=['seq', 'token'])
    parser.add_argument('--max_len', type=int, default=512)
    parser.add_argument('--num_layers', type=int, default=3)
    parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
    parser.add_argument('--model', default='roberta-base',)
    parser.add_argument('--model_name', default='google/electra-base-discriminator',)
    parser.add_argument('--gpu', default='0')
    parser.add_argument('--grad_accumulation', default=2, type=int)
    parser.add_argument('--pheno_id', type=int)
    parser.add_argument('--unseen_pheno', type=int)
    parser.add_argument('--text_subset')
    parser.add_argument('--pheno_n', type=int, default=500)
    parser.add_argument('--hidden_size', type=int, default=100)
    parser.add_argument('--emb_size', type=int, default=400)
    parser.add_argument('--total_steps', type=int, default=5000)
    parser.add_argument('--train_log', type=int, default=500)
    parser.add_argument('--val_log', type=int, default=1000)
    parser.add_argument('--seed', default = '0')
    parser.add_argument('--num_phenos', type=int, default=10)
    parser.add_argument('--num_decs', type=int, default=9)
    parser.add_argument('--num_umls_tags', type=int, default=33)
    parser.add_argument('--batch_size', type=int, default=8)
    parser.add_argument('--pos_weight', type=float, default=1.25)
    parser.add_argument('--alpha_distil', type=float, default=1)
    parser.add_argument('--distil', action='store_true')
    parser.add_argument('--distil_att', action='store_true')
    parser.add_argument('--distil_ckpt')
    parser.add_argument('--use_umls', action='store_true')
    parser.add_argument('--include_nolabel', action='store_true')
    parser.add_argument('--truncate_train', action='store_true')
    parser.add_argument('--truncate_eval', action='store_true')
    parser.add_argument('--load_ckpt', action='store_true')
    parser.add_argument('--gradio', action='store_true')
    parser.add_argument('--optuna', action='store_true')
    parser.add_argument('--mimic_data', action='store_true')
    parser.add_argument('--eval_only', action='store_true')
    parser.add_argument('--lr', type=float, default=4e-5)
    parser.add_argument('--resample', default='')
    parser.add_argument('--verbose', type=bool, default=True)
    parser.add_argument('--use_crf', type=bool)
    parser.add_argument('--print_spans', action='store_true')
    return parser.parse_args()
args = get_args()

if args.task == 'seq' and args.pheno_id is not None:
    args.num_labels = 1
elif args.task == 'seq':
    args.num_labels = args.num_phenos
elif args.task == 'token':
    if args.use_umls:
        args.num_labels = args.num_umls_tags
    else:
        args.num_labels = args.num_decs
    if args.label_encoding == 'multiclass':
        args.num_labels = args.num_labels * 2 + 1
    elif args.label_encoding == 'bo':
        args.num_labels *= 2
    elif args.label_encoding == 'boe':
        args.num_labels *= 3

categories = ['Contact related', 'Gathering additional information', 'Defining problem',
        'Treatment goal', 'Drug related', 'Therapeutic procedure related', 'Evaluating test result',
        'Deferment', 'Advice and precaution', 'Legal and insurance related']
unicode_symbols = [
        "\U0001F91D",  # Handshake
        "\U0001F50D",  # Magnifying glass
        "\U0001F9E9",  # Puzzle piece
        "\U0001F3AF",  # Target
        "\U0001F48A",  # Pill
        "\U00002702",  # Surgical scissors
        "\U0001F9EA",  # Test tube
        "\U000023F0",  # Alarm clock
        "\U000026A0",  # Warning sign
        "\U0001F4C4"   # Document
        ]

OTHERS_ID = 18
def postprocess_labels(text, logits, t2c):
    tags = [None for _ in text]
    labels = logits.argmax(-1)
    for i,cat in enumerate(labels):
        if cat != OTHERS_ID:
            char_ids = t2c(i)
            if char_ids is None:
                continue
            for idx in range(char_ids.start, char_ids.end):
                if tags[idx] is None and idx < len(text):
                    tags[idx] = categories[cat // 2]
    for i in range(len(text)-1):
        if text[i] == ' ' and (text[i+1] == ' ' or tags[i-1] == tags[i+1]):
            tags[i] = tags[i-1]
    return tags

def indicators_to_spans(labels, t2c = None):
    def add_span(c, start, end):
        if t2c(start) is None or t2c(end) is None:
            start, end = -1, -1
        else:
            start = t2c(start).start
            end = t2c(end).end
        span = (c, start, end)
        spans.add(span)

    spans = set()
    num_tokens = len(labels)
    num_classes = OTHERS_ID // 2
    start = None
    cls = None
    for t in range(num_tokens):
        if start and labels[t] == cls + 1:
            continue
        elif start:
            add_span(cls // 2, start, t - 1)
            start = None
        # if not start and labels[t] in [2*x for x in range(num_classes)]:
        if not start and labels[t] != OTHERS_ID:
            start = t
            cls = int(labels[t]) // 2 * 2
    return spans

def extract_date(text):
    pattern = r'(?<=Date: )\s*(\[\*\*.*?\*\*\]|\d{1,4}[-/]\d{1,2}[-/]\d{1,4})'
    match = re.search(pattern, text).group(1)
    start, end = None, None
    for i, c in enumerate(match):
        if start is None and c.isnumeric():
            start = i
        elif c.isnumeric():
            end = i + 1
    match = match[start:end]
    return match



device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = load_tokenizer(args.model_name)
model = load_model(args, device)[0]
model.eval()
torch.set_grad_enabled(False)

def predict(text):
    encoding = tokenizer.encode_plus(text)
    x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
    mask = torch.ones_like(x)
    output = model.generate(x, mask)[0]
    return output, encoding.token_to_chars

def process(text):
    if text is not None:
        output, t2c = predict(text)
        tags = postprocess_labels(text, output, t2c)
        with open('log.csv', 'a') as f:
            f.write(f'{datetime.now()},{text}\n')
        return list(zip(text, tags))
    else:
        return text

def process_sum(*inputs):
    global sum_c
    dates = {}
    for i in range(sum_c):
        text = inputs[i]
        output, t2c = predict(text)
        spans = indicators_to_spans(output.argmax(-1), t2c)
        date = extract_date(text)
        present_decs = set(cat for cat, _, _ in spans)
        decs = {k: [] for k in sorted(present_decs)}
        for c, s, e in spans:
            decs[c].append(text[s:e])
        dates[date] = decs

    out = ""
    for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
        out += f'## **[{date}]**\n\n'
        decs = dates[date]
        for c in decs:
            out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
            for dec in decs[c]:
                out += f'{dec}\n\n'

    return out


def get_structured_data(*inputs):
    global sum_c
    data = []
    for i in range(sum_c):
        text = inputs[i]
        output, t2c = predict(text)
        spans = indicators_to_spans(output.argmax(-1), t2c)
        date = extract_date(text)
        for c, s, e in spans:
            data.append({
                'date': date,
                'timestamp': parser.parse(date),
                'decision_type': categories[c], 'details': text[s:e]})
    return data

def update_inputs(inputs):
    outputs = []
    if inputs is None:
        c = 0
    else:
        inputs = [open(f.name).read() for f in inputs]
        for i, text in enumerate(inputs):
            outputs.append(gr.update(value=text, visible=True))
        c = len(inputs)

    n = SUM_INPUTS
    for i in range(n - c):
        outputs.append(gr.update(value='', visible=False))
    global sum_c; sum_c = c
    global structured_data
    structured_data = get_structured_data(*inputs) if inputs is not None else []
    return outputs

def add_ex(*inputs):
    global sum_c
    new_idx = sum_c
    if new_idx < SUM_INPUTS:
        out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
        sum_c += 1
    else:
        out = inputs
    return out

def sub_ex(*inputs):
    global sum_c
    new_idx = sum_c - 1
    if new_idx > 0:
        out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
        sum_c -= 1
    else:
        out = inputs
    return out


def create_timeline_plot(data: List[Dict[str, Any]]):
    df = pd.DataFrame(data)
    # df['int_cat'] = pd.factorize(df['decision_type'])[0]
    # df['int_cat_jittered'] = df['int_cat'] + np.random.uniform(-0.1, 0.1, size=len(df))
    # fig = px.scatter(df, x='date', y='int_cat_jittered', color='decision_type', hover_data=['details'],
    #                  title='Patient Timeline')
    # fig.update_layout(
    #         yaxis=dict(
    #             tickmode='array',
    #             tickvals=df['int_cat'].unique(),
    #             ticktext=df['decision_type'].unique()),
    #         xaxis_title='Date',
    #         yaxis_title='Category')
    fig = px.strip(df, x='date', y='decision_type', color='decision_type', hover_data=['details'],
                   stripmode = "overlay",
                     title='Patient Timeline')
    fig.update_traces(jitter=1.0, marker=dict(size=10, opacity=0.6))
    fig.update_layout(height=600)
    return fig

def filter_timeline(decision_type: str, start_date: str, end_date: str) -> px.scatter:
    global structured_data
    filtered_data = structured_data
    if 'All' not in decision_types:
        filtered_data = [event for event in filtered_data if event['decision_type'] in decision_types]
    
    start = parser.parse(start_date)
    end = parser.parse(end_date)
    filtered_data = [event for event in filtered_data if start <= event['timestamp'] <= end]
    
    return create_timeline_plot(filtered_data)

def generate_summary(*inputs) -> str:
    global structured_data
    structured_data = get_structured_data(*inputs)
    decision_types = {}
    for event in structured_data:
        decision_type = event['decision_type']
        decision_types[decision_type] = decision_types.get(decision_type, 0) + 1
    
    summary = "Decision Type Summary:\n"
    for decision_type, count in decision_types.items():
        summary += f"{decision_type}: {count}\n"
    return summary, create_timeline_plot(structured_data)

global sum_c
sum_c = 1
SUM_INPUTS = 20
structured_data = []

device = model.backbone.device
# colors = ['aqua', 'blue', 'fuchsia', 'teal', 'green', 'olive', 'lime', 'silver', 'purple', 'red',
#         'yellow', 'navy', 'gray', 'white', 'maroon', 'black']
colors = ['#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd']

color_map = {cat: colors[i] for i,cat in enumerate(categories)}

det_desc = ['Admit, discharge, follow-up, referral', 
        'Ordering test, consulting colleague, seeking external information',
        'Diagnostic conclusion, evaluation of health state, etiological inference, prognostic judgment',
        'Quantitative or qualitative',
        'Start, stop, alter, maintain, refrain',
        'Start, stop, alter, maintain, refrain',
        'Positive, negative, ambiguous test results',
        'Transfer responsibility, wait and see, change subject',
        'Advice or precaution',
        'Sick leave, drug refund, insurance, disability']

desc = '### Zones (categories)\n'
desc += '| | |\n| --- | --- |\n'
for i,cat in enumerate(categories):
    desc += f'| {unicode_symbols[i]} **{cat}** | {det_desc[i]}|\n'

#colors
#markdown labels
#legend and desc
#css font-size
css = '.category-legend {border:1px dashed black;}'\
        '.text-sm {font-size: 1.5rem; line-height: 200%;}'\
        '.gr-sample-textbox {width: 1000px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}'\
        '.text-limit label textarea {height: 150px !important; overflow: scroll; }'\
        '.text-gray-500 {color: #111827; font-weight: 600; font-size: 1.25em; margin-top: 1.6em; margin-bottom: 0.6em;'\
                'line-height: 1.6;}'\
        '#sum-out {border: 2px solid #007bff; padding: 20px; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);'
title='Clinical Decision Zoning'
with gr.Blocks(title=title, css=css) as demo:
    gr.Markdown(f'# {title}')
    with gr.Tab("Label a Clinical Note"):
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
                text_input = gr.Textbox(
                        # value=examples[0],
                        label="",
                        placeholder="Enter text here...")
                text_btn = gr.Button('Run')
            with gr.Column():
                gr.Markdown("## Labeled Summary or Note"),
                text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
        gr.Examples(text_examples, inputs=text_input)
    with gr.Tab("Summarize Patient History"):
        with gr.Row():
            with gr.Column():
                sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
                sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
                    for i in range(2, SUM_INPUTS + 1)])
                sum_btn = gr.Button('Run')
                with gr.Row():
                    ex_add = gr.Button("+")
                    ex_sub = gr.Button("-")
                upload = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
                gr.Examples(sum_examples, inputs=upload,
                        fn = update_inputs, outputs=sum_inputs, run_on_click=True)
            with gr.Column():
                gr.Markdown("## Summarized Clinical Decision History")
                sum_out = gr.Markdown(elem_id='sum-out')
    with gr.Tab("Timeline Visualization Tool"):
        with gr.Column():
            sum_inputs2 = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
            sum_inputs2.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
                for i in range(2, SUM_INPUTS + 1)])
            with gr.Row():
                ex_add2 = gr.Button("+")
                ex_sub2 = gr.Button("-")
            upload2 = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
            gr.Examples(sum_examples, inputs=upload2,
                    fn = update_inputs, outputs=sum_inputs2, run_on_click=True)
        with gr.Column():
            with gr.Row():
                decision_type = gr.Dropdown(["All"] + categories,
                                            multiselect=True,
                                            label="Decision Type", value="All")
                start_date = gr.Textbox(label="Start Date (MM/DD/YYYY)", value="01/01/2006")
                end_date = gr.Textbox(label="End Date (MM/DD/YYYY)", value="12/31/2024")
            
            filter_button = gr.Button("Filter Timeline")
            
            timeline_plot = gr.Plot()
            
            summary_button = gr.Button("Generate Summary")
            summary_output = gr.Textbox(label="Summary")
    gr.Markdown(desc)

    # Functions
    text_input.submit(process, inputs=text_input, outputs=text_out)
    text_btn.click(process, inputs=text_input, outputs=text_out)
    upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
    upload2.change(update_inputs, inputs=upload2, outputs=sum_inputs2)
    ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
    ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
    ex_add2.click(add_ex, inputs=sum_inputs2, outputs=sum_inputs2)
    ex_sub2.click(sub_ex, inputs=sum_inputs2, outputs=sum_inputs2)
    sum_btn.click(process_sum, inputs=sum_inputs, outputs=sum_out)
    filter_button.click(filter_timeline, inputs=[decision_type, start_date, end_date], outputs=timeline_plot)
    summary_button.click(generate_summary, inputs=sum_inputs2, outputs=[summary_output, timeline_plot])
demo.launch(share=True)