File size: 8,368 Bytes
c47c7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import copy
import torch
from torch import nn
from transformers import AutoModel
from torch.optim import AdamW
from transformers import get_linear_schedule_with_warmup
# from torchcrf import CRF

class MyModel(nn.Module):
    def __init__(self, args, backbone):
        super().__init__()
        self.args = args
        self.backbone = backbone
        self.cls_id = 0
        hidden_dim = self.backbone.config.hidden_size
        self.classifier = nn.Sequential(
                nn.Dropout(0.1),
                nn.Linear(hidden_dim, args.num_labels)
                )

        if args.distil_att:
            self.distil_att = nn.Parameter(torch.ones(self.backbone.config.hidden_size))

    def forward(self, x, mask):
        x = x.to(self.backbone.device)
        mask = mask.to(self.backbone.device)
        out = self.backbone(x, attention_mask = mask, output_attentions=True)
        return out, self.classifier(out.last_hidden_state)

    def decisions(self, x, mask):
        x = x.to(self.backbone.device)
        mask = mask.to(self.backbone.device)
        out = self.backbone(x, attention_mask = mask, output_attentions=False)
        return out, self.classifier(out.last_hidden_state)

    def phenos(self, x, mask):
        x = x.to(self.backbone.device)
        mask = mask.to(self.backbone.device)
        out = self.backbone(x, attention_mask = mask, output_attentions=True)
        return out, self.classifier(out.pooler_output)

    def generate(self, x, mask, choice=None):
        outs = []
        if self.args.task == 'seq' or choice == 'seq':
            for i, offset in enumerate(range(0, x.shape[1], self.args.max_len-1)):
                if i == 0:
                    segment = x[:, offset:offset + self.args.max_len-1]
                    segment_mask = mask[:, offset:offset + self.args.max_len-1]
                else:
                    segment = torch.cat((torch.ones((x.shape[0], 1), dtype=int).to(x.device)\
                            *self.cls_id,
                            x[:, offset:offset + self.args.max_len-1]), axis=1)
                    segment_mask = torch.cat((torch.ones((mask.shape[0], 1)).to(mask.device),
                            mask[:, offset:offset + self.args.max_len-1]), axis=1)
                logits = self.phenos(segment, segment_mask)[1]
                outs.append(logits)

            return torch.max(torch.stack(outs, 1), 1).values
        elif self.args.task == 'token':
            for i, offset in enumerate(range(0, x.shape[1], self.args.max_len)):
                segment = x[:, offset:offset + self.args.max_len]
                segment_mask = mask[:, offset:offset + self.args.max_len]
                h = self.decisions(segment, segment_mask)[0].last_hidden_state
                outs.append(h)
            h = torch.cat(outs, 1)
            return self.classifier(h)

class CNN(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.emb = nn.Embedding(args.vocab_size, args.emb_size)
        self.model = nn.Sequential(
                nn.Conv1d(args.emb_size, args.hidden_size, args.kernels[0],
                    padding='same' if args.task == 'token' else 'valid'),
                nn.ReLU(),
                nn.MaxPool1d(1),
                nn.Conv1d(args.hidden_size, args.hidden_size, args.kernels[1],
                    padding='same' if args.task == 'token' else 'valid'),
                nn.ReLU(),
                nn.MaxPool1d(1),
                nn.Conv1d(args.hidden_size, args.hidden_size, args.kernels[2],
                    padding='same' if args.task == 'token' else 'valid'),
                nn.ReLU(),
                nn.MaxPool1d(1),
                )
        if args.task == 'seq':
            out_shape = 512 - args.kernels[0] - args.kernels[1] - args.kernels[2] + 3
        elif args.task == 'token':
            out_shape = 1
        self.classifier = nn.Linear(args.hidden_size*out_shape, args.num_labels)
        self.dropout = nn.Dropout()
        self.args = args
        self.device = None

    def forward(self, x, _):
        x = x.to(self.device)
        bs = x.shape[0]
        x = self.emb(x)
        x = x.transpose(1,2)
        x = self.model(x)
        x = self.dropout(x)
        if self.args.task == 'token':
            x = x.transpose(1,2)
            h = self.classifier(x)
            return x, h
        elif self.args.task == 'seq':
            x = x.reshape(bs, -1)
            x = self.classifier(x)
            return x

    def generate(self, x, _):
        outs = []
        for i, offset in enumerate(range(0, x.shape[1], self.args.max_len)):
            segment = x[:, offset:offset + self.args.max_len]
            n = segment.shape[1]
            if n != self.args.max_len:
                segment = torch.nn.functional.pad(segment, (0, self.args.max_len -  n))
            if self.args.task == 'seq':
                logits = self(segment, None)
                outs.append(logits)
            elif self.args.task == 'token':
                h = self(segment, None)[0]
                h = h[:,:n]
                outs.append(h)
        if self.args.task == 'seq':
            return torch.max(torch.stack(outs, 1), 1).values
        elif self.args.task == 'token':
            h = torch.cat(outs, 1)
            return self.classifier(h)

class LSTM(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.emb = nn.Embedding(args.vocab_size, args.emb_size)
        self.model = nn.LSTM(args.emb_size, args.hidden_size, num_layers=args.num_layers,
                batch_first=True, bidirectional=True)
        dim = 2*args.num_layers*args.hidden_size if args.task == 'seq' else 2*args.hidden_size
        self.classifier = nn.Linear(dim, args.num_labels)
        self.dropout = nn.Dropout()
        self.args = args
        self.device = None

    def forward(self, x, _):
        x = x.to(self.device)
        x = self.emb(x)
        o, (x, _) = self.model(x)
        o_out = self.classifier(o) if self.args.task == 'token' else None
        if self.args.task == 'seq':
            x = torch.cat([h for h in x], 1)
            x = self.dropout(x)
            x = self.classifier(x)
        return (x, o), o_out

    def generate(self, x, _):
        outs = []
        for i, offset in enumerate(range(0, x.shape[1], self.args.max_len)):
            segment = x[:, offset:offset + self.args.max_len]
            if self.args.task == 'seq':
                logits = self(segment, None)[0][0]
                outs.append(logits)
            elif self.args.task == 'token':
                h = self(segment, None)[0][1]
                outs.append(h)
        if self.args.task == 'seq':
            return torch.max(torch.stack(outs, 1), 1).values
        elif self.args.task == 'token':
            h = torch.cat(outs, 1)
            return self.classifier(h)

def load_model(args, device):
    if args.model == 'lstm':
        model = LSTM(args).to(device)
        model.device = device
    elif args.model == 'cnn':
        model = CNN(args).to(device)
        model.device = device
    else:
        model = MyModel(args, AutoModel.from_pretrained(args.model_name)).to(device)
    if args.ckpt:
        model.load_state_dict(torch.load(args.ckpt, map_location=device), strict=False)
    if args.distil:
        args2 = copy.deepcopy(args)
        args2.task = 'token'
        # args2.num_labels = args.num_decs
        args2.num_labels = args.num_umls_tags
        model_B = MyModel(args2, AutoModel.from_pretrained(args.model_name)).to(device)
        model_B.load_state_dict(torch.load(args.distil_ckpt, map_location=device), strict=False)
        for p in model_B.parameters():
            p.requires_grad = False
    else:
        model_B = None
    if args.label_encoding == 'multiclass':
        if args.use_crf:
            crit = CRF(args.num_labels, batch_first = True).to(device)
        else:
            crit = nn.CrossEntropyLoss(reduction='none')
    else:
        crit = nn.BCEWithLogitsLoss(
                pos_weight=torch.ones(args.num_labels).to(device)*args.pos_weight,
                reduction='none'
                )
    optimizer = AdamW(model.parameters(), lr=args.lr)
    lr_scheduler = get_linear_schedule_with_warmup(optimizer,
            int(0.1*args.total_steps), args.total_steps)

    return model, crit, optimizer, lr_scheduler, model_B