mohdelgaar's picture
Add timeline tool
55d47b9
raw
history blame
17.1 kB
import re
import argparse
import torch
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np
from data import load_tokenizer
from model import load_model
from datetime import datetime
from dateutil import parser
from demo_assets import *
from typing import List, Dict, Any
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='/data/mohamed/data')
parser.add_argument('--aim_repo', default='/data/mohamed/')
parser.add_argument('--ckpt', default='electra-base.pt')
parser.add_argument('--aim_exp', default='mimic-decisions-1215')
parser.add_argument('--label_encoding', default='multiclass')
parser.add_argument('--multiclass', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_losses', action='store_true')
parser.add_argument('--task', default='token', choices=['seq', 'token'])
parser.add_argument('--max_len', type=int, default=512)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
parser.add_argument('--model', default='roberta-base',)
parser.add_argument('--model_name', default='google/electra-base-discriminator',)
parser.add_argument('--gpu', default='0')
parser.add_argument('--grad_accumulation', default=2, type=int)
parser.add_argument('--pheno_id', type=int)
parser.add_argument('--unseen_pheno', type=int)
parser.add_argument('--text_subset')
parser.add_argument('--pheno_n', type=int, default=500)
parser.add_argument('--hidden_size', type=int, default=100)
parser.add_argument('--emb_size', type=int, default=400)
parser.add_argument('--total_steps', type=int, default=5000)
parser.add_argument('--train_log', type=int, default=500)
parser.add_argument('--val_log', type=int, default=1000)
parser.add_argument('--seed', default = '0')
parser.add_argument('--num_phenos', type=int, default=10)
parser.add_argument('--num_decs', type=int, default=9)
parser.add_argument('--num_umls_tags', type=int, default=33)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--pos_weight', type=float, default=1.25)
parser.add_argument('--alpha_distil', type=float, default=1)
parser.add_argument('--distil', action='store_true')
parser.add_argument('--distil_att', action='store_true')
parser.add_argument('--distil_ckpt')
parser.add_argument('--use_umls', action='store_true')
parser.add_argument('--include_nolabel', action='store_true')
parser.add_argument('--truncate_train', action='store_true')
parser.add_argument('--truncate_eval', action='store_true')
parser.add_argument('--load_ckpt', action='store_true')
parser.add_argument('--gradio', action='store_true')
parser.add_argument('--optuna', action='store_true')
parser.add_argument('--mimic_data', action='store_true')
parser.add_argument('--eval_only', action='store_true')
parser.add_argument('--lr', type=float, default=4e-5)
parser.add_argument('--resample', default='')
parser.add_argument('--verbose', type=bool, default=True)
parser.add_argument('--use_crf', type=bool)
parser.add_argument('--print_spans', action='store_true')
return parser.parse_args()
args = get_args()
if args.task == 'seq' and args.pheno_id is not None:
args.num_labels = 1
elif args.task == 'seq':
args.num_labels = args.num_phenos
elif args.task == 'token':
if args.use_umls:
args.num_labels = args.num_umls_tags
else:
args.num_labels = args.num_decs
if args.label_encoding == 'multiclass':
args.num_labels = args.num_labels * 2 + 1
elif args.label_encoding == 'bo':
args.num_labels *= 2
elif args.label_encoding == 'boe':
args.num_labels *= 3
categories = ['Contact related', 'Gathering additional information', 'Defining problem',
'Treatment goal', 'Drug related', 'Therapeutic procedure related', 'Evaluating test result',
'Deferment', 'Advice and precaution', 'Legal and insurance related']
unicode_symbols = [
"\U0001F91D", # Handshake
"\U0001F50D", # Magnifying glass
"\U0001F9E9", # Puzzle piece
"\U0001F3AF", # Target
"\U0001F48A", # Pill
"\U00002702", # Surgical scissors
"\U0001F9EA", # Test tube
"\U000023F0", # Alarm clock
"\U000026A0", # Warning sign
"\U0001F4C4" # Document
]
OTHERS_ID = 18
def postprocess_labels(text, logits, t2c):
tags = [None for _ in text]
labels = logits.argmax(-1)
for i,cat in enumerate(labels):
if cat != OTHERS_ID:
char_ids = t2c(i)
if char_ids is None:
continue
for idx in range(char_ids.start, char_ids.end):
if tags[idx] is None and idx < len(text):
tags[idx] = categories[cat // 2]
for i in range(len(text)-1):
if text[i] == ' ' and (text[i+1] == ' ' or tags[i-1] == tags[i+1]):
tags[i] = tags[i-1]
return tags
def indicators_to_spans(labels, t2c = None):
def add_span(c, start, end):
if t2c(start) is None or t2c(end) is None:
start, end = -1, -1
else:
start = t2c(start).start
end = t2c(end).end
span = (c, start, end)
spans.add(span)
spans = set()
num_tokens = len(labels)
num_classes = OTHERS_ID // 2
start = None
cls = None
for t in range(num_tokens):
if start and labels[t] == cls + 1:
continue
elif start:
add_span(cls // 2, start, t - 1)
start = None
# if not start and labels[t] in [2*x for x in range(num_classes)]:
if not start and labels[t] != OTHERS_ID:
start = t
cls = int(labels[t]) // 2 * 2
return spans
def extract_date(text):
pattern = r'(?<=Date: )\s*(\[\*\*.*?\*\*\]|\d{1,4}[-/]\d{1,2}[-/]\d{1,4})'
match = re.search(pattern, text).group(1)
start, end = None, None
for i, c in enumerate(match):
if start is None and c.isnumeric():
start = i
elif c.isnumeric():
end = i + 1
match = match[start:end]
return match
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = load_tokenizer(args.model_name)
model = load_model(args, device)[0]
model.eval()
torch.set_grad_enabled(False)
def predict(text):
encoding = tokenizer.encode_plus(text)
x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
mask = torch.ones_like(x)
output = model.generate(x, mask)[0]
return output, encoding.token_to_chars
def process(text):
if text is not None:
output, t2c = predict(text)
tags = postprocess_labels(text, output, t2c)
with open('log.csv', 'a') as f:
f.write(f'{datetime.now()},{text}\n')
return list(zip(text, tags))
else:
return text
def process_sum(*inputs):
global sum_c
dates = {}
for i in range(sum_c):
text = inputs[i]
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
date = extract_date(text)
present_decs = set(cat for cat, _, _ in spans)
decs = {k: [] for k in sorted(present_decs)}
for c, s, e in spans:
decs[c].append(text[s:e])
dates[date] = decs
out = ""
for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
out += f'## **[{date}]**\n\n'
decs = dates[date]
for c in decs:
out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
for dec in decs[c]:
out += f'{dec}\n\n'
return out
def get_structured_data(*inputs):
global sum_c
data = []
for i in range(sum_c):
text = inputs[i]
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
date = extract_date(text)
for c, s, e in spans:
data.append({
'date': date,
'timestamp': parser.parse(date),
'decision_type': categories[c], 'details': text[s:e]})
return data
def update_inputs(inputs):
outputs = []
if inputs is None:
c = 0
else:
inputs = [open(f.name).read() for f in inputs]
for i, text in enumerate(inputs):
outputs.append(gr.update(value=text, visible=True))
c = len(inputs)
n = SUM_INPUTS
for i in range(n - c):
outputs.append(gr.update(value='', visible=False))
global sum_c; sum_c = c
global structured_data
structured_data = get_structured_data(*inputs) if inputs is not None else []
return outputs
def add_ex(*inputs):
global sum_c
new_idx = sum_c
if new_idx < SUM_INPUTS:
out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
sum_c += 1
else:
out = inputs
return out
def sub_ex(*inputs):
global sum_c
new_idx = sum_c - 1
if new_idx > 0:
out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
sum_c -= 1
else:
out = inputs
return out
def create_timeline_plot(data: List[Dict[str, Any]]):
df = pd.DataFrame(data)
# df['int_cat'] = pd.factorize(df['decision_type'])[0]
# df['int_cat_jittered'] = df['int_cat'] + np.random.uniform(-0.1, 0.1, size=len(df))
# fig = px.scatter(df, x='date', y='int_cat_jittered', color='decision_type', hover_data=['details'],
# title='Patient Timeline')
# fig.update_layout(
# yaxis=dict(
# tickmode='array',
# tickvals=df['int_cat'].unique(),
# ticktext=df['decision_type'].unique()),
# xaxis_title='Date',
# yaxis_title='Category')
fig = px.strip(df, x='date', y='decision_type', color='decision_type', hover_data=['details'],
stripmode = "overlay",
title='Patient Timeline')
fig.update_traces(jitter=1.0, marker=dict(size=10, opacity=0.6))
fig.update_layout(height=600)
return fig
def filter_timeline(decision_type: str, start_date: str, end_date: str) -> px.scatter:
global structured_data
filtered_data = structured_data
if 'All' not in decision_types:
filtered_data = [event for event in filtered_data if event['decision_type'] in decision_types]
start = parser.parse(start_date)
end = parser.parse(end_date)
filtered_data = [event for event in filtered_data if start <= event['timestamp'] <= end]
return create_timeline_plot(filtered_data)
def generate_summary(*inputs) -> str:
global structured_data
structured_data = get_structured_data(*inputs)
decision_types = {}
for event in structured_data:
decision_type = event['decision_type']
decision_types[decision_type] = decision_types.get(decision_type, 0) + 1
summary = "Decision Type Summary:\n"
for decision_type, count in decision_types.items():
summary += f"{decision_type}: {count}\n"
return summary, create_timeline_plot(structured_data)
global sum_c
sum_c = 1
SUM_INPUTS = 20
structured_data = []
device = model.backbone.device
# colors = ['aqua', 'blue', 'fuchsia', 'teal', 'green', 'olive', 'lime', 'silver', 'purple', 'red',
# 'yellow', 'navy', 'gray', 'white', 'maroon', 'black']
colors = ['#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd']
color_map = {cat: colors[i] for i,cat in enumerate(categories)}
det_desc = ['Admit, discharge, follow-up, referral',
'Ordering test, consulting colleague, seeking external information',
'Diagnostic conclusion, evaluation of health state, etiological inference, prognostic judgment',
'Quantitative or qualitative',
'Start, stop, alter, maintain, refrain',
'Start, stop, alter, maintain, refrain',
'Positive, negative, ambiguous test results',
'Transfer responsibility, wait and see, change subject',
'Advice or precaution',
'Sick leave, drug refund, insurance, disability']
desc = '### Zones (categories)\n'
desc += '| | |\n| --- | --- |\n'
for i,cat in enumerate(categories):
desc += f'| {unicode_symbols[i]} **{cat}** | {det_desc[i]}|\n'
#colors
#markdown labels
#legend and desc
#css font-size
css = '.category-legend {border:1px dashed black;}'\
'.text-sm {font-size: 1.5rem; line-height: 200%;}'\
'.gr-sample-textbox {width: 1000px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}'\
'.text-limit label textarea {height: 150px !important; overflow: scroll; }'\
'.text-gray-500 {color: #111827; font-weight: 600; font-size: 1.25em; margin-top: 1.6em; margin-bottom: 0.6em;'\
'line-height: 1.6;}'\
'#sum-out {border: 2px solid #007bff; padding: 20px; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);'
title='Clinical Decision Zoning'
with gr.Blocks(title=title, css=css) as demo:
gr.Markdown(f'# {title}')
with gr.Tab("Label a Clinical Note"):
with gr.Row():
with gr.Column():
gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
text_input = gr.Textbox(
# value=examples[0],
label="",
placeholder="Enter text here...")
text_btn = gr.Button('Run')
with gr.Column():
gr.Markdown("## Labeled Summary or Note"),
text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
gr.Examples(text_examples, inputs=text_input)
with gr.Tab("Summarize Patient History"):
with gr.Row():
with gr.Column():
sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
for i in range(2, SUM_INPUTS + 1)])
sum_btn = gr.Button('Run')
with gr.Row():
ex_add = gr.Button("+")
ex_sub = gr.Button("-")
upload = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
gr.Examples(sum_examples, inputs=upload,
fn = update_inputs, outputs=sum_inputs, run_on_click=True)
with gr.Column():
gr.Markdown("## Summarized Clinical Decision History")
sum_out = gr.Markdown(elem_id='sum-out')
with gr.Tab("Timeline Visualization Tool"):
with gr.Column():
sum_inputs2 = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
sum_inputs2.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
for i in range(2, SUM_INPUTS + 1)])
with gr.Row():
ex_add2 = gr.Button("+")
ex_sub2 = gr.Button("-")
upload2 = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
gr.Examples(sum_examples, inputs=upload2,
fn = update_inputs, outputs=sum_inputs2, run_on_click=True)
with gr.Column():
with gr.Row():
decision_type = gr.Dropdown(["All"] + categories,
multiselect=True,
label="Decision Type", value="All")
start_date = gr.Textbox(label="Start Date (MM/DD/YYYY)", value="01/01/2006")
end_date = gr.Textbox(label="End Date (MM/DD/YYYY)", value="12/31/2024")
filter_button = gr.Button("Filter Timeline")
timeline_plot = gr.Plot()
summary_button = gr.Button("Generate Summary")
summary_output = gr.Textbox(label="Summary")
gr.Markdown(desc)
# Functions
text_input.submit(process, inputs=text_input, outputs=text_out)
text_btn.click(process, inputs=text_input, outputs=text_out)
upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
upload2.change(update_inputs, inputs=upload2, outputs=sum_inputs2)
ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
ex_add2.click(add_ex, inputs=sum_inputs2, outputs=sum_inputs2)
ex_sub2.click(sub_ex, inputs=sum_inputs2, outputs=sum_inputs2)
sum_btn.click(process_sum, inputs=sum_inputs, outputs=sum_out)
filter_button.click(filter_timeline, inputs=[decision_type, start_date, end_date], outputs=timeline_plot)
summary_button.click(generate_summary, inputs=sum_inputs2, outputs=[summary_output, timeline_plot])
demo.launch(share=True)