mohdelgaar's picture
Initial commit
c47c7dc
raw
history blame
19.7 kB
import torch
import json
import os
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer
from glob import glob
from collections.abc import Iterable
from collections import defaultdict
pheno_map = {'alcohol.abuse': 0,
'advanced.lung.disease': 1,
'advanced.heart.disease': 2,
'chronic.pain.fibromyalgia': 3,
'other.substance.abuse': 4,
'psychiatric.disorders': 5,
'obesity': 6,
'depression': 7,
'advanced.cancer': 8,
'chronic.neurological.dystrophies': 9,
'none': -1}
rev_pheno_map = {v: k for k,v in pheno_map.items()}
valid_cats = range(0,9)
umls_cats = ['T114', 'T029', 'T073', 'T058', 'T191', 'T200', 'T048', 'T019', 'T046', 'T023', 'T041', 'T059', 'T184', 'T034', 'T116', 'T039', 'T127', 'T201', 'T129', 'T067', 'T109', 'T197', 'T131', 'T130', 'T126', 'T061', 'T203', 'T047', 'T037', 'T074', 'T031', 'T195', 'T168']
umls_map = {s: i for i,s in enumerate(umls_cats)}
def gen_splits(args, phenos):
np.random.seed(0)
if args.task == 'token':
files = glob(os.path.join(args.data_dir, 'mimic_decisions/data/**/*'))
if args.use_umls:
files = ["/".join(x.split('/')[-1:]) for x in files]
else:
files = ["/".join(x.split('/')[-2:]) for x in files]
subjects = np.unique([os.path.basename(x).split('_')[0] for x in files])
elif phenos is not None:
subjects = phenos['subject_id'].unique()
else:
raise ValueError
phenos['phenotype_label'] = phenos['phenotype_label'].apply(lambda x: x.lower())
n = len(subjects)
train_count = int(0.8*n)
val_count = int(0.9*n) - int(0.8*n)
test_count = n - int(0.9*n)
train, val, test = [], [], []
np.random.shuffle(subjects)
subjects = list(subjects)
pheno_list = set(pheno_map.keys())
if args.unseen_pheno is not None:
test_phenos = {rev_pheno_map[args.unseen_pheno]}
unseen_pheno = rev_pheno_map[args.unseen_pheno]
train_phenos = pheno_list - test_phenos
else:
test_phenos = pheno_list
train_phenos = pheno_list
unseen_pheno = 'null'
while len(subjects) > 0:
if len(pheno_list) > 0:
for pheno in pheno_list:
if len(train) < train_count and pheno in train_phenos:
el = None
for i, subj in enumerate(subjects):
row = phenos[phenos.subject_id == subj]
if row['phenotype_label'].apply(lambda x: pheno in x and not unseen_pheno in x).any():
el = subjects.pop(i)
break
if el is not None:
train.append(el)
elif el is None:
pheno_list.remove(pheno)
break
if len(val) < val_count and (not args.pheno_id or len(val) <= (0.5*val_count)):
el = None
for i, subj in enumerate(subjects):
row = phenos[phenos.subject_id == subj]
if row['phenotype_label'].apply(lambda x: pheno in x).any():
el = subjects.pop(i)
break
if el is not None:
val.append(el)
elif el is None:
pheno_list.remove(pheno)
break
if len(test) < test_count or (args.unseen_pheno is not None and pheno in test_phenos):
el = None
for i, subj in enumerate(subjects):
row = phenos[phenos.subject_id == subj]
if row['phenotype_label'].apply(lambda x: pheno in x).any():
el = subjects.pop(i)
break
if el is not None:
test.append(el)
elif el is None:
pheno_list.remove(pheno)
break
else:
if len(train) < train_count:
el = subjects.pop()
if el is not None:
train.append(el)
if len(val) < val_count:
el = subjects.pop()
if el is not None:
val.append(el)
if len(test) < test_count:
el = subjects.pop()
if el is not None:
test.append(el)
if args.task == 'token':
train = [x for x in files if os.path.basename(x).split('_')[0] in train]
val = [x for x in files if os.path.basename(x).split('_')[0] in val]
test = [x for x in files if os.path.basename(x).split('_')[0] in test]
elif phenos is not None:
train = phenos[phenos.subject_id.isin(train)]
val = phenos[phenos.subject_id.isin(val)]
test = phenos[phenos.subject_id.isin(test)]
return train, val, test
class MyDataset(Dataset):
def __init__(self, args, tokenizer, data_source, phenos, train = False):
super().__init__()
self.tokenizer = tokenizer
self.data = []
self.train = train
self.pheno_ids = defaultdict(list)
self.dec_ids = {k: [] for k in pheno_map.keys()}
if args.task == 'seq':
for i, row in data_source.iterrows():
sample = self.load_phenos(args, row, i)
self.data.append(sample)
else:
for i, fn in enumerate(data_source):
sample = self.load_decisions(args, fn, i, phenos)
self.data.append(sample)
def load_phenos(self, args, row, idx):
txt_candidates = glob(os.path.join(args.data_dir,
f'mimic_decisions/raw_text/{row["subject_id"]}_{row["hadm_id"]}*.txt'))
text = open(txt_candidates[0]).read()
if args.pheno_n == 500:
file_dir = glob(os.path.join(args.data_dir,
f'mimic_decisions/data/*/{row["subject_id"]}_{row["hadm_id"]}*.json'))[0]
with open(file_dir) as f:
data = json.load(f, strict=False)
annots = data[0]['annotations']
if args.text_subset:
unlabeled_text = np.ones(len(text), dtype=bool)
labeled_text = np.zeros(len(text), dtype=bool)
for annot in annots:
cat = parse_cat(annot['category'])
start, end = map(int, (annot['start_offset'], annot['end_offset']))
if cat is not None:
unlabeled_text[start:end] = 0
if cat in args.text_subset:
labeled_text[start:end] = 1
combined_text = unlabeled_text | labeled_text if args.include_nolabel else labeled_text
text = "".join([c for i,c in enumerate(text) if combined_text[i]])
encoding = self.tokenizer.encode_plus(text,
truncation=args.truncate_train if self.train else args.truncate_eval)
ids = np.zeros((args.num_decs, len(encoding['input_ids'])))
for annot in annots:
start = int(annot['start_offset'])
enc_start = encoding.char_to_token(start)
i = 1
while enc_start is None:
enc_start = encoding.char_to_token(start+i)
i += 1
end = int(annot['end_offset'])
enc_end = encoding.char_to_token(end)
j = 1
while enc_end is None:
enc_end = encoding.char_to_token(end-j)
j += 1
if enc_start is None or enc_end is None:
raise ValueError
cat = parse_cat(annot['category'])
if not cat or cat not in valid_cats:
continue
ids[cat-1, enc_start:enc_end] = 1
else:
encoding = self.tokenizer.encode_plus(text,
truncation=args.truncate_train if self.train else args.truncate_eval)
ids = None
labels = np.zeros(args.num_phenos)
if args.pheno_n in (500, 800):
sample_phenos = row['phenotype_label']
if sample_phenos != 'none':
for pheno in sample_phenos.split(','):
labels[pheno_map[pheno.lower()]] = 1
elif args.pheno_n == 1500:
for k,v in pheno_map.items():
if row[k] == 1:
labels[v] = 1
if args.pheno_id is not None:
if args.pheno_id == -1:
labels = [0.0 if any(labels) else 1.0]
else:
labels = [labels[args.pheno_id]]
return encoding['input_ids'], labels, ids
def load_decisions(self, args, fn, idx, phenos):
basename = os.path.basename(fn).split("-")[0]
if args.use_umls:
file_dir = os.path.join(args.data_dir, 'mimic_decisions/umls', basename)
else:
file_dir = os.path.join(args.data_dir, 'mimic_decisions/data', fn)
pheno_id = "_".join(basename.split("_")[:3]) + '.txt'
txt_candidates = glob(os.path.join(args.data_dir,
f'mimic_decisions/raw_text/{basename}*.txt'))
text = open(txt_candidates[0]).read()
encoding = self.tokenizer.encode_plus(text,
max_length=args.max_len,
truncation=args.truncate_train if self.train else args.truncate_eval,
padding = 'max_length',
)
if pheno_id in phenos.index:
sample_phenos = phenos.loc[pheno_id]['phenotype_label']
for pheno in sample_phenos.split(','):
self.pheno_ids[pheno].append(idx)
with open(file_dir) as f:
data = json.load(f, strict=False)
if args.use_umls:
annots = data
else:
annots = data[0]['annotations']
if args.label_encoding == 'multiclass':
labels = np.full(len(encoding['input_ids']), args.num_labels-1, dtype=int)
else:
labels = np.zeros((len(encoding['input_ids']), args.num_labels))
for annot in annots:
start = int(annot['start_offset'])
enc_start = encoding.char_to_token(start)
i = 1
while enc_start is None and i < 10:
enc_start = encoding.char_to_token(start+i)
i += 1
if i == 10:
break
end = int(annot['end_offset'])
enc_end = encoding.char_to_token(end)
j = 1
while enc_end is None and j < 10:
enc_end = encoding.char_to_token(end-j)
j += 1
if j == 10:
enc_end = len(encoding.input_ids)
if enc_start is None or enc_end is None:
raise ValueError
if args.label_encoding == 'multiclass' and any([x in [2*y for y in range(args.num_labels//2)] for x in labels[enc_start:enc_end]]):
continue
if args.use_umls:
cat = umls_map.get(annot['category'], None)
else:
cat = parse_cat(annot['category'])
if cat:
cat -= 1
if cat is None or (not args.use_umls and cat not in valid_cats):
continue
if args.label_encoding == 'multiclass':
cat1 = cat * 2
cat2 = cat * 2 + 1
labels[enc_start] = cat1
labels[enc_start+1:enc_end] = cat2
elif args.label_encoding == 'bo':
cat1 = cat * 2
cat2 = cat * 2 + 1
labels[enc_start, cat1] = 1
labels[enc_start+1:enc_end, cat2] = 1
elif args.label_encoding == 'boe':
cat1 = cat * 3
cat2 = cat * 3 + 1
cat3 = cat * 3 + 2
labels[enc_start, cat1] = 1
labels[enc_start+1:enc_end-1, cat2] = 1
labels[enc_end-1, cat3] = 1
else:
labels[enc_start:enc_end, cat] = 1
return {'input_ids': encoding['input_ids'], 'labels': labels, 't2c': encoding.token_to_chars}
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
def parse_cat(cat):
for i,c in enumerate(cat):
if c.isnumeric():
if cat[i+1].isnumeric():
return int(cat[i:i+2])
return int(c)
return None
def load_phenos(args):
if args.pheno_n == 500:
phenos = pd.read_csv(os.path.join(args.data_dir,
'mimic_decisions/phenos500'),
sep='\t').rename(lambda x: x.strip(), axis=1)
phenos['raw_text'] = phenos['raw_text'].apply(lambda x: os.path.basename(x))
phenos[['SUBJECT_ID', 'HADM_ID', 'ROW_ID']] = \
[os.path.splitext(x)[0].split('_')[:3] for x in phenos['raw_text']]
phenos = phenos[phenos['phenotype_label'] != '?']
elif args.pheno_n == 800:
phenos = pd.read_csv(os.path.join(args.data_dir, 'mimic_decisions/phenos800.csv'))
phenos.rename({'Ham_ID': 'HADM_ID'}, inplace=True, axis=1)
phenos = phenos[phenos.phenotype_label != '?']
elif args.pheno_n == 1500:
phenos = pd.read_csv(os.path.join(args.data_dir, 'mimic_decisions/phenos1500.csv'))
phenos.rename({'Hospital.Admission.ID': 'HADM_ID',
'subject.id': 'SUBJECT_ID'}, inplace=True, axis=1)
phenos = phenos[phenos.Unsure != 1]
phenos['psychiatric.disorders'] = phenos['Dementia']\
| phenos['Developmental.Delay.Retardation']\
| phenos['Schizophrenia.and.other.Psychiatric.Disorders']
else:
raise ValueError
phenos.rename(lambda k: k.lower(), inplace=True, axis = 1)
return phenos
def downsample(dataset):
data = dataset.data
class0 = [x for x in data if x[1][0] == 0]
class1 = [x for x in data if x[1][0] == 1]
if len(class0) > len(class1):
class0 = resample(class0, replace=False, n_samples=len(class1), random_state=0)
else:
class1 = resample(class1, replace=False, n_samples=len(class0), random_state=0)
dataset.data = class0 + class1
def upsample(dataset):
data = dataset.data
class0 = [x for x in data if x[1][0] == 0]
class1 = [x for x in data if x[1][0] == 1]
if len(class0) > len(class1):
class1 = resample(class1, replace=True, n_samples=len(class0), random_state=0)
else:
class0 = resample(class0, replace=True, n_samples=len(class1), random_state=0)
dataset.data = class0 + class1
def load_tokenizer(name):
return AutoTokenizer.from_pretrained(name)
def load_data(args):
from sklearn.utils import resample
def collate_segment(batch):
xs = []
ys = []
t2cs = []
has_ids = 'ids' in batch[0]
if has_ids:
idss = []
else:
ids = None
masks = []
for i in range(len(batch)):
x = batch[i]['input_ids']
y = batch[i]['labels']
if has_ids:
ids = batch[i]['ids']
n = len(x)
if n > args.max_len:
start = np.random.randint(0, n - args.max_len + 1)
x = x[start:start + args.max_len]
if args.task == 'token':
y = y[start:start + args.max_len]
if has_ids:
new_ids = []
ids = [x[start:start + args.max_len] for x in ids]
for subids in ids:
subids = [idx for idx, x in enumerate(subids) if x]
new_ids.append(subids)
all_ids = set([y for x in new_ids for y in x])
nones = set(range(args.max_len)) - all_ids
new_ids.append(list(nones))
mask = [1] * args.max_len
elif n < args.max_len:
x = np.pad(x, (0, args.max_len - n))
if args.task == 'token':
y = np.pad(y, ((0, args.max_len - n), (0, 0)))
mask = [1] * n + [0] * (args.max_len - n)
else:
mask = [1] * n
xs.append(x)
ys.append(y)
t2cs.append(batch[i]['t2c'])
if has_ids:
idss.append(new_ids)
masks.append(mask)
xs = torch.tensor(xs)
ys = torch.tensor(ys)
masks = torch.tensor(masks)
return {'input_ids': xs, 'labels': ys, 'ids': ids, 'mask': masks, 't2c': t2cs}
def collate_full(batch):
lens = [len(x['input_ids']) for x in batch]
max_len = max(args.max_len, max(lens))
for i in range(len(batch)):
batch[i]['input_ids'] = np.pad(batch[i]['input_ids'], (0, max_len - lens[i]))
if args.task == 'token':
if args.label_encoding == 'multiclass':
batch[i]['labels'] = np.pad(batch[i]['labels'], (0, max_len - lens[i]), constant_values=-100)
else:
batch[i]['labels'] = np.pad(batch[i]['labels'], ((0, max_len - lens[i]), (0, 0)))
mask = [1] * lens[i] + [0] * (max_len - lens[i])
batch[i]['mask'] = mask
batch = {k: torch.tensor(np.array([sample[k] for sample in batch])) if isinstance(batch[0][k], Iterable) else
[sample[k] for sample in batch]
for k in batch[0].keys()}
return batch
tokenizer = load_tokenizer(args.model_name)
args.vocab_size = tokenizer.vocab_size
args.max_length = min(tokenizer.model_max_length, 512)
if args.mimic_data:
from datasets import Dataset
df = pd.read_csv('/data/mohamed/data/mimiciii/NOTEEVENTS.csv.gz',
usecols=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'TEXT'])
data = Dataset.from_pandas(df)
return data, tokenizer
else:
phenos = load_phenos(args)
train_files, val_files, test_files = gen_splits(args, phenos)
phenos.set_index('raw_text', inplace=True)
train_dataset = MyDataset(args, tokenizer, train_files, phenos, train=True)
if args.resample == 'down':
downsample(train_dataset)
elif args.resample == 'up':
upsample(train_dataset)
val_dataset = MyDataset(args, tokenizer, val_files, phenos)
test_dataset = MyDataset(args, tokenizer, test_files, phenos)
print('Train dataset:', len(train_dataset))
print('Val dataset:', len(val_dataset))
print('Test dataset:', len(test_dataset))
train_ns = DataLoader(train_dataset, 1, False,
collate_fn=collate_full,
)
train_dataloader = DataLoader(train_dataset, args.batch_size, True,
collate_fn=collate_segment,
)
val_dataloader = DataLoader(val_dataset, 1, False, collate_fn=collate_full)
test_dataloader = DataLoader(test_dataset, 1, False, collate_fn=collate_full)
train_files = [os.path.basename(x).split('-')[0] for x in train_files]
val_files = [os.path.basename(x).split('-')[0] for x in val_files]
test_files = [os.path.basename(x).split('-')[0] for x in test_files]
return train_dataloader, val_dataloader, test_dataloader, train_ns, [train_files, val_files, test_files]