File size: 70,610 Bytes
20b7679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
import pandas as pd

sca_names = "W,S,VP,C,T,DC,CT,CP,CN,MLS,MLT,MLC,C-S,VP-T,C-T,DC-C,DC-T,T-S,\
CT-T,CP-T,CP-C,CN-T,CN-C".split(',')
lca_names = "wordtypes,swordtypes,lextypes,slextypes,wordtokens,swordtokens,\
lextokens,slextokens,ld,ls1,ls2,vs1,vs2,cvs1,ndw,ndwz,ndwerz,ndwesz,ttr,\
msttr,cttr,rttr,logttr,uber,lv,vv1,svv1,cvv1,vv2,nv,adjv,advv,modv".split(',')

lftk_names = [
        't_word', 't_stopword', 't_punct', 't_syll', 't_syll2', 't_syll3', 't_uword', 't_sent', 't_char', 'a_word_ps', 'a_char_ps',
        'a_char_pw', 'a_syll_ps', 'a_syll_pw', 'a_stopword_ps', 'a_stopword_pw', 't_kup', 't_bry', 't_subtlex_us_zipf', 'a_kup_pw',
        'a_bry_pw', 'a_kup_ps', 'a_bry_ps', 'a_subtlex_us_zipf_pw', 'a_subtlex_us_zipf_ps', 't_n_ent', 't_n_ent_person', 't_n_ent_norp',
        't_n_ent_fac', 't_n_ent_org', 't_n_ent_gpe', 't_n_ent_loc', 't_n_ent_product', 't_n_ent_event', 't_n_ent_art', 't_n_ent_law',
        't_n_ent_language', 't_n_ent_date', 't_n_ent_time', 't_n_ent_percent', 't_n_ent_money', 't_n_ent_quantity', 't_n_ent_ordinal',
        't_n_ent_cardinal', 'a_n_ent_pw', 'a_n_ent_person_pw', 'a_n_ent_norp_pw', 'a_n_ent_fac_pw', 'a_n_ent_org_pw', 'a_n_ent_gpe_pw',
        'a_n_ent_loc_pw', 'a_n_ent_product_pw', 'a_n_ent_event_pw', 'a_n_ent_art_pw', 'a_n_ent_law_pw', 'a_n_ent_language_pw',
        'a_n_ent_date_pw', 'a_n_ent_time_pw', 'a_n_ent_percent_pw', 'a_n_ent_money_pw', 'a_n_ent_quantity_pw', 'a_n_ent_ordinal_pw',
        'a_n_ent_cardinal_pw', 'a_n_ent_ps', 'a_n_ent_person_ps', 'a_n_ent_norp_ps', 'a_n_ent_fac_ps', 'a_n_ent_org_ps', 'a_n_ent_gpe_ps',
        'a_n_ent_loc_ps', 'a_n_ent_product_ps', 'a_n_ent_event_ps', 'a_n_ent_art_ps', 'a_n_ent_law_ps', 'a_n_ent_language_ps',
        'a_n_ent_date_ps', 'a_n_ent_time_ps', 'a_n_ent_percent_ps', 'a_n_ent_money_ps', 'a_n_ent_quantity_ps', 'a_n_ent_ordinal_ps',
        'a_n_ent_cardinal_ps', 'simp_adj_var', 'simp_adp_var', 'simp_adv_var', 'simp_aux_var', 'simp_cconj_var', 'simp_det_var',
        'simp_intj_var', 'simp_noun_var', 'simp_num_var', 'simp_part_var', 'simp_pron_var', 'simp_propn_var', 'simp_punct_var',
        'simp_sconj_var', 'simp_sym_var', 'simp_verb_var', 'simp_space_var', 'root_adj_var', 'root_adp_var', 'root_adv_var', 'root_aux_var',
        'root_cconj_var', 'root_det_var', 'root_intj_var', 'root_noun_var', 'root_num_var', 'root_part_var', 'root_pron_var', 'root_propn_var',
        'root_punct_var', 'root_sconj_var', 'root_sym_var', 'root_verb_var', 'root_space_var', 'corr_adj_var', 'corr_adp_var', 'corr_adv_var',
        'corr_aux_var', 'corr_cconj_var', 'corr_det_var', 'corr_intj_var', 'corr_noun_var', 'corr_num_var', 'corr_part_var', 'corr_pron_var',
        'corr_propn_var', 'corr_punct_var', 'corr_sconj_var', 'corr_sym_var', 'corr_verb_var', 'corr_space_var', 'simp_ttr', 'root_ttr',
        'corr_ttr', 'bilog_ttr', 'uber_ttr', 'simp_ttr_no_lem', 'root_ttr_no_lem', 'corr_ttr_no_lem', 'bilog_ttr_no_lem', 'uber_ttr_no_lem',
        'n_adj', 'n_adp', 'n_adv', 'n_aux', 'n_cconj', 'n_det', 'n_intj', 'n_noun', 'n_num', 'n_part', 'n_pron', 'n_propn', 'n_punct',
        'n_sconj', 'n_sym', 'n_verb', 'n_space', 'n_uadj', 'n_uadp', 'n_uadv', 'n_uaux', 'n_ucconj', 'n_udet', 'n_uintj', 'n_unoun',
        'n_unum', 'n_upart', 'n_upron', 'n_upropn', 'n_upunct', 'n_usconj', 'n_usym', 'n_uverb', 'n_uspace', 'a_adj_pw', 'a_adp_pw',
        'a_adv_pw', 'a_aux_pw', 'a_cconj_pw', 'a_det_pw', 'a_intj_pw', 'a_noun_pw', 'a_num_pw', 'a_part_pw', 'a_pron_pw', 'a_propn_pw',
        'a_punct_pw', 'a_sconj_pw', 'a_sym_pw', 'a_verb_pw', 'a_space_pw', 'a_adj_ps', 'a_adp_ps', 'a_adv_ps', 'a_aux_ps', 'a_cconj_ps',
        'a_det_ps', 'a_intj_ps', 'a_noun_ps', 'a_num_ps', 'a_part_ps', 'a_pron_ps', 'a_propn_ps', 'a_punct_ps', 'a_sconj_ps', 'a_sym_ps',
        'a_verb_ps', 'a_space_ps', 'fkre', 'fkgl', 'fogi', 'smog', 'cole', 'auto', 'rt_fast', 'rt_average', 'rt_slow']

lftk_full_names = ['Total Number Of Words', 'Total Number Of Stop Words',
        'Total Number Of Puntuations', 'Total Number Of Syllables',
        'Total Number Of Words More Than Two Syllables', 'Total Number Of Words More Than Three Syllables',
        'Total Number Of Unique Words', 'Total Number Of Sentences',
        'Total Number Of Characters', 'Average Number Of Words Per Sentence',
        'Average Number Of Characters Per Sentence', 'Average Number Of Characters Per Word',
        'Average Number Of Syllables Per Sentence', 'Average Number Of Syllables Per Word',
        'Average Number Of Stop Words Per Sentence', 'Average Number Of Stop Words Per Word',
        'Total Kuperman Age Of Acquistion Of Words', 'Total Brysbaert Age Of Acquistion Of Words',
        'Total Subtlex Us Zipf Of Words', 'Average Kuperman Age Of Acquistion Of Words Per Word',
        'Average Brysbaert Age Of Acquistion Of Words Per Word', 'Average Kuperman Age Of Acquistion Of Words Per Sentence',
        'Average Brysbaert Age Of Acquistion Of Words Per Sentence', 'Average Subtlex Us Zipf Of Words Per Word',
        'Average Subtlex Us Zipf Of Words Per Sentence', 'Total Number Of Named Entities',
        'Total Number Of Named Entities Person', 'Total Number Of Named Entities Norp',
        'Total Number Of Named Entities Fac', 'Total Number Of Named Entities Org',
        'Total Number Of Named Entities Gpe', 'Total Number Of Named Entities Loc',
        'Total Number Of Named Entities Product', 'Total Number Of Named Entities Event',
        'Total Number Of Named Entities Art', 'Total Number Of Named Entities Law',
        'Total Number Of Named Entities Language', 'Total Number Of Named Entities Date',
        'Total Number Of Named Entities Time', 'Total Number Of Named Entities Percent',
        'Total Number Of Named Entities Money', 'Total Number Of Named Entities Quantity',
        'Total Number Of Named Entities Ordinal', 'Total Number Of Named Entities Cardinal',
        'Average Number Of Named Entities Per Word', 'Average Number Of Named Entities Person Per Word',
        'Average Number Of Named Entities Norp Per Word', 'Average Number Of Named Entities Fac Per Word',
        'Average Number Of Named Entities Org Per Word', 'Average Number Of Named Entities Gpe Per Word',
        'Average Number Of Named Entities Loc Per Word', 'Average Number Of Named Entities Product Per Word',
        'Average Number Of Named Entities Event Per Word', 'Average Number Of Named Entities Art Per Word',
        'Average Number Of Named Entities Law Per Word', 'Average Number Of Named Entities Language Per Word',
        'Average Number Of Named Entities Date Per Word', 'Average Number Of Named Entities Time Per Word',
        'Average Number Of Named Entities Percent Per Word', 'Average Number Of Named Entities Money Per Word',
        'Average Number Of Named Entities Quantity Per Word', 'Average Number Of Named Entities Ordinal Per Word',
        'Average Number Of Named Entities Cardinal Per Word', 'Average Number Of Named Entities Per Sentence',
        'Average Number Of Named Entities Person Per Sentence', 'Average Number Of Named Entities Norp Per Sentence',
        'Average Number Of Named Entities Fac Per Sentence', 'Average Number Of Named Entities Org Per Sentence',
        'Average Number Of Named Entities Gpe Per Sentence', 'Average Number Of Named Entities Loc Per Sentence',
        'Average Number Of Named Entities Product Per Sentence', 'Average Number Of Named Entities Event Per Sentence',
        'Average Number Of Named Entities Art Per Sentence', 'Average Number Of Named Entities Law Per Sentence',
        'Average Number Of Named Entities Language Per Sentence', 'Average Number Of Named Entities Date Per Sentence',
        'Average Number Of Named Entities Time Per Sentence', 'Average Number Of Named Entities Percent Per Sentence',
        'Average Number Of Named Entities Money Per Sentence', 'Average Number Of Named Entities Quantity Per Sentence',
        'Average Number Of Named Entities Ordinal Per Sentence', 'Average Number Of Named Entities Cardinal Per Sentence',
        'Simple Adjectives Variation', 'Simple Adpositions Variation',
        'Simple Adverbs Variation', 'Simple Auxiliaries Variation',
        'Simple Coordinating Conjunctions Variation', 'Simple Determiners Variation',
        'Simple Interjections Variation', 'Simple Nouns Variation',
        'Simple Numerals Variation', 'Simple Particles Variation',
        'Simple Pronouns Variation', 'Simple Proper Nouns Variation',
        'Simple Punctuations Variation', 'Simple Subordinating Conjunctions Variation',
        'Simple Symbols Variation', 'Simple Verbs Variation',
        'Simple Spaces Variation', 'Root Adjectives Variation',
        'Root Adpositions Variation', 'Root Adverbs Variation',
        'Root Auxiliaries Variation', 'Root Coordinating Conjunctions Variation',
        'Root Determiners Variation', 'Root Interjections Variation',
        'Root Nouns Variation', 'Root Numerals Variation',
        'Root Particles Variation', 'Root Pronouns Variation',
        'Root Proper Nouns Variation', 'Root Punctuations Variation',
        'Root Subordinating Conjunctions Variation', 'Root Symbols Variation',
        'Root Verbs Variation', 'Root Spaces Variation',
        'Corrected Adjectives Variation', 'Corrected Adpositions Variation',
        'Corrected Adverbs Variation', 'Corrected Auxiliaries Variation',
        'Corrected Coordinating Conjunctions Variation', 'Corrected Determiners Variation',
        'Corrected Interjections Variation', 'Corrected Nouns Variation',
        'Corrected Numerals Variation', 'Corrected Particles Variation',
        'Corrected Pronouns Variation', 'Corrected Proper Nouns Variation',
        'Corrected Punctuations Variation', 'Corrected Subordinating Conjunctions Variation',
        'Corrected Symbols Variation', 'Corrected Verbs Variation',
        'Corrected Spaces Variation', 'Simple Type Token Ratio',
        'Root Type Token Ratio', 'Corrected Type Token Ratio',
        'Bilogarithmic Type Token Ratio', 'Uber Type Token Ratio',
        'Simple Type Token Ratio No Lemma', 'Root Type Token Ratio No Lemma',
        'Corrected Type Token Ratio No Lemma', 'Bilogarithmic Type Token Ratio No Lemma',
        'Uber Type Token Ratio No Lemma', 'Total Number Of Adjectives',
        'Total Number Of Adpositions', 'Total Number Of Adverbs',
        'Total Number Of Auxiliaries', 'Total Number Of Coordinating Conjunctions',
        'Total Number Of Determiners', 'Total Number Of Interjections',
        'Total Number Of Nouns', 'Total Number Of Numerals',
        'Total Number Of Particles', 'Total Number Of Pronouns',
        'Total Number Of Proper Nouns', 'Total Number Of Punctuations',
        'Total Number Of Subordinating Conjunctions', 'Total Number Of Symbols',
        'Total Number Of Verbs', 'Total Number Of Spaces',
        'Total Number Of Unique Adjectives', 'Total Number Of Unique Adpositions',
        'Total Number Of Unique Adverbs', 'Total Number Of Unique Auxiliaries',
        'Total Number Of Unique Coordinating Conjunctions', 'Total Number Of Unique Determiners',
        'Total Number Of Unique Interjections', 'Total Number Of Unique Nouns',
        'Total Number Of Unique Numerals', 'Total Number Of Unique Particles',
        'Total Number Of Unique Pronouns', 'Total Number Of Unique Proper Nouns',
        'Total Number Of Unique Punctuations', 'Total Number Of Unique Subordinating Conjunctions',
        'Total Number Of Unique Symbols', 'Total Number Of Unique Verbs',
        'Total Number Of Unique Spaces', 'Average Number Of Adjectives Per Word',
        'Average Number Of Adpositions Per Word', 'Average Number Of Adverbs Per Word',
        'Average Number Of Auxiliaries Per Word', 'Average Number Of Coordinating Conjunctions Per Word',
        'Average Number Of Determiners Per Word', 'Average Number Of Interjections Per Word',
        'Average Number Of Nouns Per Word', 'Average Number Of Numerals Per Word',
        'Average Number Of Particles Per Word', 'Average Number Of Pronouns Per Word',
        'Average Number Of Proper Nouns Per Word', 'Average Number Of Punctuations Per Word',
        'Average Number Of Subordinating Conjunctions Per Word', 'Average Number Of Symbols Per Word',
        'Average Number Of Verbs Per Word', 'Average Number Of Spaces Per Word',
        'Average Number Of Adjectives Per Sentence', 'Average Number Of Adpositions Per Sentence',
        'Average Number Of Adverbs Per Sentence', 'Average Number Of Auxiliaries Per Sentence',
        'Average Number Of Coordinating Conjunctions Per Sentence', 'Average Number Of Determiners Per Sentence',
        'Average Number Of Interjections Per Sentence', 'Average Number Of Nouns Per Sentence',
        'Average Number Of Numerals Per Sentence', 'Average Number Of Particles Per Sentence',
        'Average Number Of Pronouns Per Sentence', 'Average Number Of Proper Nouns Per Sentence',
        'Average Number Of Punctuations Per Sentence', 'Average Number Of Subordinating Conjunctions Per Sentence',
        'Average Number Of Symbols Per Sentence', 'Average Number Of Verbs Per Sentence',
        'Average Number Of Spaces Per Sentence', 'Flesch Kincaid Reading Ease',
        'Flesch Kincaid Grade Level', 'Gunning Fog Index',
        'Smog Index', 'Coleman Liau Index',
        'Automated Readability Index', 'Reading Time For Fast Readers',
        'Reading Time For Average Readers', 'Reading Time For Slow Readers']

full_names = [
'Unique words',
'Unique sophisticated words',
'Unique lexical words',
'Unique sophisticated lexical words',
'Total words',
'Total sophisticated words',
'Total lexical words',
'Total sophisticated lexical words',
'Lexical density',
'Lexical sophistication (total)',
'Lexical sophistication (unique)',
'Verb sophistication',
'Verb sophistication (squared numerator)',
'Verb sophistication (sqrt denominator)',
'Unique words',
'Unique words in first k tokens',
'Unique words in random k tokens (average of 10 samples)',
'Unique words in random sequence of k words (average of 10 samples)',
'Ratio of unique words',
'Mean TTR of all k word segments',
'Corrected TTR (sqrt(2N) denominator)',
'Root TTR (sqrt(N) denominator)',
'Log TTR',
'Uber',
'D Measure',
'Ratio of unique verbs',
'Verb variation with squared numerator',
'Verb variation with (sqrt(2N)) denominator',
'Verb variation over all lexical words',
'Noun variation',
'Adjective variation',
'Adverb variation',
'(Ajd + Adv) variation',
'# words',
'# sentences',
'# verb phrases',
'# clauses',
'# T-units',
'# dependent clauses',
'# complex T-units',
'# coordinate phrases',
'# complex nominals',
'Mean length of sentence',
'Mean length of T-unit',
'Mean unit of clause',
'Clauses per sentence',
'Verb phrases per T-unit',
'Clauses per T-unit',
'Dependent clause ratio',
'Dependent clause per T-unit',
'T-units per sentence',
'Complex T-unit ratio',
'Coordinate phrases per T-unit',
'Coordinate phrases per clause',
'Complex nominals per T-unit',
'Complex nominals per clause',
]

lingfeat_names = [
        'WRich05_S', 'WRich10_S', 'WRich15_S', 'WRich20_S', 'WClar05_S', 'WClar10_S',
        'WClar15_S', 'WClar20_S', 'WNois05_S', 'WNois10_S', 'WNois15_S', 'WNois20_S',
        'WTopc05_S', 'WTopc10_S', 'WTopc15_S', 'WTopc20_S', 'BRich05_S', 'BRich10_S',
        'BRich15_S', 'BRich20_S', 'BClar05_S', 'BClar10_S', 'BClar15_S', 'BClar20_S',
        'BNois05_S', 'BNois10_S', 'BNois15_S', 'BNois20_S', 'BTopc05_S', 'BTopc10_S',
        'BTopc15_S', 'BTopc20_S', 'to_EntiM_C', 'as_EntiM_C', 'at_EntiM_C', 'to_UEnti_C',
        'as_UEnti_C', 'at_UEnti_C', 'ra_SSTo_C', 'ra_SOTo_C', 'ra_SXTo_C', 'ra_SNTo_C',
        'ra_OSTo_C', 'ra_OOTo_C', 'ra_OXTo_C', 'ra_ONTo_C', 'ra_XSTo_C', 'ra_XOTo_C',
        'ra_XXTo_C', 'ra_XNTo_C', 'ra_NSTo_C', 'ra_NOTo_C', 'ra_NXTo_C', 'ra_NNTo_C',
        'LoCohPA_S', 'LoCohPW_S', 'LoCohPU_S', 'LoCoDPA_S', 'LoCoDPW_S', 'LoCoDPU_S',
        'to_NoTag_C', 'as_NoTag_C', 'at_NoTag_C', 'ra_NoAjT_C', 'ra_NoVeT_C', 'ra_NoAvT_C',
        'ra_NoSuT_C', 'ra_NoCoT_C', 'to_VeTag_C', 'as_VeTag_C', 'at_VeTag_C', 'ra_VeAjT_C',
        'ra_VeNoT_C', 'ra_VeAvT_C', 'ra_VeSuT_C', 'ra_VeCoT_C', 'to_AjTag_C', 'as_AjTag_C',
        'at_AjTag_C', 'ra_AjNoT_C', 'ra_AjVeT_C', 'ra_AjAvT_C', 'ra_AjSuT_C', 'ra_AjCoT_C',
        'to_AvTag_C', 'as_AvTag_C', 'at_AvTag_C', 'ra_AvAjT_C', 'ra_AvNoT_C', 'ra_AvVeT_C',
        'ra_AvSuT_C', 'ra_AvCoT_C', 'to_SuTag_C', 'as_SuTag_C', 'at_SuTag_C', 'ra_SuAjT_C',
        'ra_SuNoT_C', 'ra_SuVeT_C', 'ra_SuAvT_C', 'ra_SuCoT_C', 'to_CoTag_C', 'as_CoTag_C',
        'at_CoTag_C', 'ra_CoAjT_C', 'ra_CoNoT_C', 'ra_CoVeT_C', 'ra_CoAvT_C', 'ra_CoSuT_C',
        'to_ContW_C', 'as_ContW_C', 'at_ContW_C', 'to_FuncW_C', 'as_FuncW_C', 'at_FuncW_C',
        'ra_CoFuW_C', 'SimpTTR_S', 'CorrTTR_S', 'BiLoTTR_S', 'UberTTR_S', 'MTLDTTR_S',
        'SimpNoV_S', 'SquaNoV_S', 'CorrNoV_S', 'SimpVeV_S', 'SquaVeV_S', 'CorrVeV_S',
        'SimpAjV_S', 'SquaAjV_S', 'CorrAjV_S', 'SimpAvV_S', 'SquaAvV_S', 'CorrAvV_S',
        'to_AAKuW_C', 'as_AAKuW_C', 'at_AAKuW_C', 'to_AAKuL_C', 'as_AAKuL_C', 'at_AAKuL_C',
        'to_AABiL_C', 'as_AABiL_C', 'at_AABiL_C', 'to_AABrL_C', 'as_AABrL_C', 'at_AABrL_C',
        'to_AACoL_C', 'as_AACoL_C', 'at_AACoL_C', 'to_SbFrQ_C', 'as_SbFrQ_C', 'at_SbFrQ_C',
        'to_SbCDC_C', 'as_SbCDC_C', 'at_SbCDC_C', 'to_SbFrL_C', 'as_SbFrL_C', 'at_SbFrL_C',
        'to_SbCDL_C', 'as_SbCDL_C', 'at_SbCDL_C', 'to_SbSBW_C', 'as_SbSBW_C', 'at_SbSBW_C',
        'to_SbL1W_C', 'as_SbL1W_C', 'at_SbL1W_C', 'to_SbSBC_C', 'as_SbSBC_C', 'at_SbSBC_C',
        'to_SbL1C_C', 'as_SbL1C_C', 'at_SbL1C_C', 'TokSenM_S', 'TokSenS_S', 'TokSenL_S',
        'as_Token_C', 'as_Sylla_C', 'at_Sylla_C', 'as_Chara_C', 'at_Chara_C', 'FleschG_S',
        'AutoRea_S', 'ColeLia_S', 'SmogInd_S', 'Gunning_S', 'LinseaW_S'
        ]

lingfeat_subtypes = [
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Knowledge Feats", 
"Entity Density Feats", 
"Entity Density Feats", 
"Entity Density Feats", 
"Entity Density Feats", 
"Entity Density Feats", 
"Entity Density Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Entity Grid Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Phrasal Feats", 
"Tree Structure Feats", 
"Tree Structure Feats", 
"Tree Structure Feats", 
"Tree Structure Feats", 
"Tree Structure Feats", 
"Tree Structure Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"POS Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"Variation Ratio Feats", 
"TTR Feats", 
"TTR Feats", 
"TTR Feats", 
"TTR Feats", 
"TTR Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Psycholinguistic Feats", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Word Familiarity", 
"Shallow Feats", 
"Shallow Feats", 
"Shallow Feats", 
"Shallow Feats", 
"Shallow Feats", 
"Shallow Feats", 
"Shallow Feats", 
"Shallow Feats", 
"Traditional Formulas", 
"Traditional Formulas", 
"Traditional Formulas", 
"Traditional Formulas", 
"Traditional Formulas", 
"Traditional Formulas", 
]

lingfeat_types = [
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"AdSem",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Disco",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"Synta",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"LxSem",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
"ShaTr",
]

lf_names = """| 1     | AdSem  | WoKF_         | Wiki Knowledge Features             | WRich05_S    | Semantic Richness, 50 topics extracted from Wikipedia                          |
| 2     | AdSem  | WoKF_         | Wiki Knowledge Features             | WClar05_S    | Semantic Clarity, 50 topics extracted from Wikipedia                           |
| 3     | AdSem  | WoKF_         | Wiki Knowledge Features             | WNois05_S    | Semantic Noise, 50 topics extracted from Wikipedia                             |
| 4     | AdSem  | WoKF_         | Wiki Knowledge Features             | WTopc05_S    | Number of topics, 50 topics extracted from Wikipedia                           |
| 5     | AdSem  | WoKF_         | Wiki Knowledge Features             | WRich10_S    | Semantic Richness, 100 topics extracted from Wikipedia                         |
| 6     | AdSem  | WoKF_         | Wiki Knowledge Features             | WClar10_S    | Semantic Clarity, 100 topics extracted from Wikipedia                          |
| 7     | AdSem  | WoKF_         | Wiki Knowledge Features             | WNois10_S    | Semantic Noise, 100 topics extracted from Wikipedia                            |
| 8     | AdSem  | WoKF_         | Wiki Knowledge Features             | WTopc10_S    | Number of topics, 100 topics extracted from Wikipedia                          |
| 9     | AdSem  | WoKF_         | Wiki Knowledge Features             | WRich15_S    | Semantic Richness, 150 topics extracted from Wikipedia                         |
| 10    | AdSem  | WoKF_         | Wiki Knowledge Features             | WClar15_S    | Semantic Clarity, 150 topics extracted from Wikipedia                          |
| 11    | AdSem  | WoKF_         | Wiki Knowledge Features             | WNois15_S    | Semantic Noise, 150 topics extracted from Wikipedia                            |
| 12    | AdSem  | WoKF_         | Wiki Knowledge Features             | WTopc15_S    | Number of topics, 150 topics extracted from Wikipedia                          |
| 13    | AdSem  | WoKF_         | Wiki Knowledge Features             | WRich20_S    | Semantic Richness, 200 topics extracted from Wikipedia                         |
| 14    | AdSem  | WoKF_         | Wiki Knowledge Features             | WClar20_S    | Semantic Clarity, 200 topics extracted from Wikipedia                          |
| 15    | AdSem  | WoKF_         | Wiki Knowledge Features             | WNois20_S    | Semantic Noise, 200 topics extracted from Wikipedia                            |
| 16    | AdSem  | WoKF_         | Wiki Knowledge Features             | WTopc20_S    | Number of topics, 200 topics extracted from Wikipedia                          |
| 17    | AdSem  | WBKF_         | WB Knowledge Features     | BRich05_S    | Semantic Richness, 50 topics extracted from WeeBit Corpus                  |
| 18    | AdSem  | WBKF_         | WB Knowledge Features     | BClar05_S    | Semantic Clarity, 50 topics extracted from WeeBit Corpus                       |
| 19    | AdSem  | WBKF_         | WB Knowledge Features     | BNois05_S    | Semantic Noise, 50 topics extracted from WeeBit Corpus                         |
| 20    | AdSem  | WBKF_         | WB Knowledge Features     | BTopc05_S    | Number of topics, 50 topics extracted from WeeBit Corpus                       |
| 21    | AdSem  | WBKF_         | WB Knowledge Features     | BRich10_S    | Semantic Richness, 100 topics extracted from WeeBit Corpus                 |
| 22    | AdSem  | WBKF_         | WB Knowledge Features     | BClar10_S    | Semantic Clarity, 100 topics extracted from WeeBit Corpus                      |
| 23    | AdSem  | WBKF_         | WB Knowledge Features     | BNois10_S    | Semantic Noise, 100 topics extracted from WeeBit Corpus                        |
| 24    | AdSem  | WBKF_         | WB Knowledge Features     | BTopc10_S    | Number of topics, 100 topics extracted from WeeBit Corpus                      |
| 25    | AdSem  | WBKF_         | WB Knowledge Features     | BRich15_S    | Semantic Richness, 150 topics extracted from WeeBit Corpus                 |
| 26    | AdSem  | WBKF_         | WB Knowledge Features     | BClar15_S    | Semantic Clarity, 150 topics extracted from WeeBit Corpus                      |
| 27    | AdSem  | WBKF_         | WB Knowledge Features     | BNois15_S    | Semantic Noise, 150 topics extracted from WeeBit Corpus                        |
| 28    | AdSem  | WBKF_         | WB Knowledge Features     | BTopc15_S    | Number of topics, 150 topics extracted from WeeBit Corpus                      |
| 29    | AdSem  | WBKF_         | WB Knowledge Features     | BRich20_S    | Semantic Richness, 200 topics extracted from WeeBit Corpus                 |
| 30    | AdSem  | WBKF_         | WB Knowledge Features     | BClar20_S    | Semantic Clarity, 200 topics extracted from WeeBit Corpus                      |
| 31    | AdSem  | WBKF_         | WB Knowledge Features     | BNois20_S    | Semantic Noise, 200 topics extracted from WeeBit Corpus                        |
| 32    | AdSem  | WBKF_         | WB Knowledge Features     | BTopc20_S    | Number of topics, 200 topics extracted from WeeBit Corpus                      |
| 33    | AdSem  | OSKF_         | OSE Knowledge Features | ORich05_S    | Semantic Richness, 50 topics extracted from OneStopEng Corpus              |
| 34    | AdSem  | OSKF_         | OSE Knowledge Features | OClar05_S    | Semantic Clarity, 50 topics extracted from OneStopEng Corpus                   |
| 35    | AdSem  | OSKF_         | OSE Knowledge Features | ONois05_S    | Semantic Noise, 50 topics extracted from OneStopEng Corpus                     |
| 36    | AdSem  | OSKF_         | OSE Knowledge Features | OTopc05_S    | Number of topics, 50 topics extracted from OneStopEng Corpus                   |
| 37    | AdSem  | OSKF_         | OSE Knowledge Features | ORich10_S    | Semantic Richness, 100 topics extracted from OneStopEng Corpus             |
| 38    | AdSem  | OSKF_         | OSE Knowledge Features | OClar10_S    | Semantic Clarity, 100 topics extracted from OneStopEng Corpus                  |
| 39    | AdSem  | OSKF_         | OSE Knowledge Features | ONois10_S    | Semantic Noise, 100 topics extracted from OneStopEng Corpus                    |
| 40    | AdSem  | OSKF_         | OSE Knowledge Features | OTopc10_S    | Number of topics, 100 topics extracted from OneStopEng Corpus                  |
| 41    | AdSem  | OSKF_         | OSE Knowledge Features | ORich15_S    | Semantic Richness, 150 topics extracted from OneStopEng Corpus             |
| 42    | AdSem  | OSKF_         | OSE Knowledge Features | OClar15_S    | Semantic Clarity, 150 topics extracted from OneStopEng Corpus                  |
| 43    | AdSem  | OSKF_         | OSE Knowledge Features | ONois15_S    | Semantic Noise, 150 topics extracted from OneStopEng Corpus                    |
| 44    | AdSem  | OSKF_         | OSE Knowledge Features | OTopc15_S    | Number of topics, 150 topics extracted from OneStopEng Corpus                  |
| 45    | AdSem  | OSKF_         | OSE Knowledge Features | ORich20_S    | Semantic Richness, 200 topics extracted from OneStopEng Corpus             |
| 46    | AdSem  | OSKF_         | OSE Knowledge Features | OClar20_S    | Semantic Clarity, 200 topics extracted from OneStopEng Corpus                  |
| 47    | AdSem  | OSKF_         | OSE Knowledge Features | ONois20_S    | Semantic Noise, 200 topics extracted from OneStopEng Corpus                    |
| 48    | AdSem  | OSKF_         | OSE Knowledge Features | OTopc20_S    | Number of topics, 200 topics extracted from OneStopEng Corpus                  |
| 49    | Disco           | EnDF_         | Entity Density Features              | to_EntiM_C   | total number of Entities Mentions counts                                       |
| 50    | Disco           | EnDF_         | Entity Density Features              | as_EntiM_C   | average number of Entities Mentions counts per sentence                        |
| 51    | Disco           | EnDF_         | Entity Density Features              | at_EntiM_C   | average number of Entities Mentions counts per token (word)                    |
| 52    | Disco           | EnDF_         | Entity Density Features              | to_UEnti_C   | total number of unique Entities                                                |
| 53    | Disco           | EnDF_         | Entity Density Features              | as_UEnti_C   | average number of unique Entities per sentence                                 |
| 54    | Disco           | EnDF_         | Entity Density Features              | at_UEnti_C   | average number of unique Entities per token (word)                             |
| 55    | Disco           | EnGF_         | Entity Grid Features                 | ra_SSTo_C   | ratio of ss transitions to total                                               |
| 56    | Disco           | EnGF_         | Entity Grid Features                 | ra_SOTo_C   | ratio of so transitions to total                                               |
| 57    | Disco           | EnGF_         | Entity Grid Features                 | ra_SXTo_C   | ratio of sx transitions to total                                               |
| 58    | Disco           | EnGF_         | Entity Grid Features                 | ra_SNTo_C   | ratio of sn transitions to total                                               |
| 59    | Disco           | EnGF_         | Entity Grid Features                 | ra_OSTo_C   | ratio of os transitions to total                                               |
| 60    | Disco           | EnGF_         | Entity Grid Features                 | ra_OOTo_C   | ratio of oo transitions to total                                               |
| 61    | Disco           | EnGF_         | Entity Grid Features                 | ra_OXTo_C   | ratio of ox transitions to total                                               |
| 62    | Disco           | EnGF_         | Entity Grid Features                 | ra_ONTo_C   | ratio of on transitions to total                                               |
| 63    | Disco           | EnGF_         | Entity Grid Features                 | ra_XSTo_C   | ratio of xs transitions to total                                               |
| 64    | Disco           | EnGF_         | Entity Grid Features                 | ra_XOTo_C   | ratio of xo transitions to total                                               |
| 65    | Disco           | EnGF_         | Entity Grid Features                 | ra_XXTo_C   | ratio of xx transitions to total                                               |
| 66    | Disco           | EnGF_         | Entity Grid Features                 | ra_XNTo_C   | ratio of xn transitions to total                                               |
| 67    | Disco           | EnGF_         | Entity Grid Features                 | ra_NSTo_C   | ratio of ns transitions to total                                               |
| 68    | Disco           | EnGF_         | Entity Grid Features                 | ra_NOTo_C   | ratio of no transitions to total                                               |
| 69    | Disco           | EnGF_         | Entity Grid Features                 | ra_NXTo_C   | ratio of nx transitions to total                                               |
| 70    | Disco           | EnGF_         | Entity Grid Features                 | ra_NNTo_C   | ratio of nn transitions to total                                               |
| 71    | Disco           | EnGF_         | Entity Grid Features                 | LoCohPA_S    | Local Coherence for PA score                                                   |
| 72    | Disco           | EnGF_         | Entity Grid Features                 | LoCohPW_S    | Local Coherence for PW score                                                   |
| 73    | Disco           | EnGF_         | Entity Grid Features                 | LoCohPU_S    | Local Coherence for PU score                                                   |
| 74    | Disco           | EnGF_         | Entity Grid Features                 | LoCoDPA_S    | Local Coherence distance for PA score                                          |
| 75    | Disco           | EnGF_         | Entity Grid Features                 | LoCoDPW_S    | Local Coherence distance for PW score                                          |
| 76    | Disco           | EnGF_         | Entity Grid Features                 | LoCoDPU_S    | Local Coherence distance for PU score                                          |
| 77    | Synta           | PhrF_         | Phrasal Features                     | to_NoPhr_C   | total count of Noun phrases                                                    |
| 78    | Synta           | PhrF_         | Phrasal Features                     | as_NoPhr_C   | average count of Noun phrases per sentence                                     |
| 79    | Synta           | PhrF_         | Phrasal Features                     | at_NoPhr_C   | average count of Noun phrases per token                                        |
| 80    | Synta           | PhrF_         | Phrasal Features                     | ra_NoVeP_C   | ratio of Noun phrases count to Verb phrases count                              |
| 81    | Synta           | PhrF_         | Phrasal Features                     | ra_NoSuP_C   | ratio of Noun phrases count to Subordinate Clauses count                       |
| 82    | Synta           | PhrF_         | Phrasal Features                     | ra_NoPrP_C   | ratio of Noun phrases count to Prep phrases count                              |
| 83    | Synta           | PhrF_         | Phrasal Features                     | ra_NoAjP_C   | ratio of Noun phrases count to Adj phrases count                               |
| 84    | Synta           | PhrF_         | Phrasal Features                     | ra_NoAvP_C   | ratio of Noun phrases count to Adv phrases count                               |
| 85    | Synta           | PhrF_         | Phrasal Features                     | to_VePhr_C   | total count of Verb phrases                                                    |
| 86    | Synta           | PhrF_         | Phrasal Features                     | as_VePhr_C   | average count of Verb phrases per sentence                                     |
| 87    | Synta           | PhrF_         | Phrasal Features                     | at_VePhr_C   | average count of Verb phrases per token                                        |
| 88    | Synta           | PhrF_         | Phrasal Features                     | ra_VeNoP_C   | ratio of Verb phrases count to Noun phrases count                              |
| 89    | Synta           | PhrF_         | Phrasal Features                     | ra_VeSuP_C   | ratio of Verb phrases count to Subordinate Clauses count                       |
| 90    | Synta           | PhrF_         | Phrasal Features                     | ra_VePrP_C   | ratio of Verb phrases count to Prep phrases count                              |
| 91    | Synta           | PhrF_         | Phrasal Features                     | ra_VeAjP_C   | ratio of Verb phrases count to Adj phrases count                               |
| 92    | Synta           | PhrF_         | Phrasal Features                     | ra_VeAvP_C   | ratio of Verb phrases count to Adv phrases count                               |
| 93    | Synta           | PhrF_         | Phrasal Features                     | to_SuPhr_C   | total count of Subordinate Clauses                                             |
| 94    | Synta           | PhrF_         | Phrasal Features                     | as_SuPhr_C   | average count of Subordinate Clauses per sentence                              |
| 95    | Synta           | PhrF_         | Phrasal Features                     | at_SuPhr_C   | average count of Subordinate Clauses per token                                 |
| 96    | Synta           | PhrF_         | Phrasal Features                     | ra_SuNoP_C   | ratio of Subordinate Clauses count to Noun phrases count                       |
| 97    | Synta           | PhrF_         | Phrasal Features                     | ra_SuVeP_C   | ratio of Subordinate Clauses count to Verb phrases count                       |
| 98    | Synta           | PhrF_         | Phrasal Features                     | ra_SuPrP_C   | ratio of Subordinate Clauses count to Prep phrases count                       |
| 99    | Synta           | PhrF_         | Phrasal Features                     | ra_SuAjP_C   | ratio of Subordinate Clauses count to Adj phrases count                        |
| 100   | Synta           | PhrF_         | Phrasal Features                     | ra_SuAvP_C   | ratio of Subordinate Clauses count to Adv phrases count                        |
| 101   | Synta           | PhrF_         | Phrasal Features                     | to_PrPhr_C   | total count of prepositional phrases                                           |
| 102   | Synta           | PhrF_         | Phrasal Features                     | as_PrPhr_C   | average count of prepositional phrases per sentence                            |
| 103   | Synta           | PhrF_         | Phrasal Features                     | at_PrPhr_C   | average count of prepositional phrases per token                               |
| 104   | Synta           | PhrF_         | Phrasal Features                     | ra_PrNoP_C   | ratio of Prep phrases count to Noun phrases count                              |
| 105   | Synta           | PhrF_         | Phrasal Features                     | ra_PrVeP_C   | ratio of Prep phrases count to Verb phrases count                              |
| 106   | Synta           | PhrF_         | Phrasal Features                     | ra_PrSuP_C   | ratio of Prep phrases count to Subordinate Clauses count                       |
| 107   | Synta           | PhrF_         | Phrasal Features                     | ra_PrAjP_C   | ratio of Prep phrases count to Adj phrases count                               |
| 108   | Synta           | PhrF_         | Phrasal Features                     | ra_PrAvP_C   | ratio of Prep phrases count to Adv phrases count                               |
| 109   | Synta           | PhrF_         | Phrasal Features                     | to_AjPhr_C   | total count of Adjective phrases                                               |
| 110   | Synta           | PhrF_         | Phrasal Features                     | as_AjPhr_C   | average count of Adjective phrases per sentence                                |
| 111   | Synta           | PhrF_         | Phrasal Features                     | at_AjPhr_C   | average count of Adjective phrases per token                                   |
| 112   | Synta           | PhrF_         | Phrasal Features                     | ra_AjNoP_C   | ratio of Adj phrases count to Noun phrases count                               |
| 113   | Synta           | PhrF_         | Phrasal Features                     | ra_AjVeP_C   | ratio of Adj phrases count to Verb phrases count                               |
| 114   | Synta           | PhrF_         | Phrasal Features                     | ra_AjSuP_C   | ratio of Adj phrases count to Subordinate Clauses count                        |
| 115   | Synta           | PhrF_         | Phrasal Features                     | ra_AjPrP_C   | ratio of Adj phrases count to Prep phrases count                               |
| 116   | Synta           | PhrF_         | Phrasal Features                     | ra_AjAvP_C   | ratio of Adj phrases count to Adv phrases count                                |
| 117   | Synta           | PhrF_         | Phrasal Features                     | to_AvPhr_C   | total count of Adverb phrases                                                  |
| 118   | Synta           | PhrF_         | Phrasal Features                     | as_AvPhr_C   | average count of Adverb phrases per sentence                                   |
| 119   | Synta           | PhrF_         | Phrasal Features                     | at_AvPhr_C   | average count of Adverb phrases per token                                      |
| 120   | Synta           | PhrF_         | Phrasal Features                     | ra_AvNoP_C   | ratio of Adv phrases count to Noun phrases count                               |
| 121   | Synta           | PhrF_         | Phrasal Features                     | ra_AvVeP_C   | ratio of Adv phrases count to Verb phrases count                               |
| 122   | Synta           | PhrF_         | Phrasal Features                     | ra_AvSuP_C   | ratio of Adv phrases count to Subordinate Clauses count                        |
| 123   | Synta           | PhrF_         | Phrasal Features                     | ra_AvPrP_C   | ratio of Adv phrases count to Prep phrases count                               |
| 124   | Synta           | PhrF_         | Phrasal Features                     | ra_AvAjP_C   | ratio of Adv phrases count to Adj phrases count                                |
| 125   | Synta           | TrSF_         | Tree Structure Features              | to_TreeH_C   | total Tree height of all sentences                                             |
| 126   | Synta           | TrSF_         | Tree Structure Features              | as_TreeH_C   | average Tree height per sentence                                               |
| 127   | Synta           | TrSF_         | Tree Structure Features              | at_TreeH_C   | average Tree height per token (word)                                           |
| 128   | Synta           | TrSF_         | Tree Structure Features              | to_FTree_C   | total length of flattened Trees                                                |
| 129   | Synta           | TrSF_         | Tree Structure Features              | as_FTree_C   | average length of flattened Trees per sentence                                 |
| 130   | Synta           | TrSF_         | Tree Structure Features              | at_FTree_C   | average length of flattened Trees per token (word)                             |
| 131   | Synta           | POSF_         | Part-of-Speech Features              | to_NoTag_C   | total count of Noun POS tags                                                   |
| 132   | Synta           | POSF_         | Part-of-Speech Features              | as_NoTag_C   | average count of Noun POS tags per sentence                                    |
| 133   | Synta           | POSF_         | Part-of-Speech Features              | at_NoTag_C   | average count of Noun POS tags per token                                       |
| 134   | Synta           | POSF_         | Part-of-Speech Features              | ra_NoAjT_C   | ratio of Noun POS count to Adjective POS count                                 |
| 135   | Synta           | POSF_         | Part-of-Speech Features              | ra_NoVeT_C   | ratio of Noun POS count to Verb POS count                                      |
| 136   | Synta           | POSF_         | Part-of-Speech Features              | ra_NoAvT_C   | ratio of Noun POS count to Adverb POS count                                    |
| 137   | Synta           | POSF_         | Part-of-Speech Features              | ra_NoSuT_C   | ratio of Noun POS count to Subordinating Conjunction count                     |
| 138   | Synta           | POSF_         | Part-of-Speech Features              | ra_NoCoT_C   | ratio of Noun POS count to Coordinating Conjunction count                      |
| 139   | Synta           | POSF_         | Part-of-Speech Features              | to_VeTag_C   | total count of Verb POS tags                                                   |
| 140   | Synta           | POSF_         | Part-of-Speech Features              | as_VeTag_C   | average count of Verb POS tags per sentence                                    |
| 141   | Synta           | POSF_         | Part-of-Speech Features              | at_VeTag_C   | average count of Verb POS tags per token                                       |
| 142   | Synta           | POSF_         | Part-of-Speech Features              | ra_VeAjT_C   | ratio of Verb POS count to Adjective POS count                                 |
| 143   | Synta           | POSF_         | Part-of-Speech Features              | ra_VeNoT_C   | ratio of Verb POS count to Noun POS count                                      |
| 144   | Synta           | POSF_         | Part-of-Speech Features              | ra_VeAvT_C   | ratio of Verb POS count to Adverb POS count                                    |
| 145   | Synta           | POSF_         | Part-of-Speech Features              | ra_VeSuT_C   | ratio of Verb POS count to Subordinating Conjunction count                     |
| 146   | Synta           | POSF_         | Part-of-Speech Features              | ra_VeCoT_C   | ratio of Verb POS count to Coordinating Conjunction count                      |
| 147   | Synta           | POSF_         | Part-of-Speech Features              | to_AjTag_C   | total count of Adjective POS tags                                              |
| 148   | Synta           | POSF_         | Part-of-Speech Features              | as_AjTag_C   | average count of Adjective POS tags per sentence                               |
| 149   | Synta           | POSF_         | Part-of-Speech Features              | at_AjTag_C   | average count of Adjective POS tags per token                                  |
| 150   | Synta           | POSF_         | Part-of-Speech Features              | ra_AjNoT_C   | ratio of Adjective POS count to Noun POS count                                 |
| 151   | Synta           | POSF_         | Part-of-Speech Features              | ra_AjVeT_C   | ratio of Adjective POS count to Verb POS count                                 |
| 152   | Synta           | POSF_         | Part-of-Speech Features              | ra_AjAvT_C   | ratio of Adjective POS count to Adverb POS count                               |
| 153   | Synta           | POSF_         | Part-of-Speech Features              | ra_AjSuT_C   | ratio of Adjective POS count to Subordinating Conjunction count                |
| 154   | Synta           | POSF_         | Part-of-Speech Features              | ra_AjCoT_C   | ratio of Adjective POS count to Coordinating Conjunction count                 |
| 155   | Synta           | POSF_         | Part-of-Speech Features              | to_AvTag_C   | total count of Adverb POS tags                                                 |
| 156   | Synta           | POSF_         | Part-of-Speech Features              | as_AvTag_C   | average count of Adverb POS tags per sentence                                  |
| 157   | Synta           | POSF_         | Part-of-Speech Features              | at_AvTag_C   | average count of Adverb POS tags per token                                     |
| 158   | Synta           | POSF_         | Part-of-Speech Features              | ra_AvAjT_C   | ratio of Adverb POS count to Adjective POS count                               |
| 159   | Synta           | POSF_         | Part-of-Speech Features              | ra_AvNoT_C   | ratio of Adverb POS count to Noun POS count                                    |
| 160   | Synta           | POSF_         | Part-of-Speech Features              | ra_AvVeT_C   | ratio of Adverb POS count to Verb POS count                                    |
| 161   | Synta           | POSF_         | Part-of-Speech Features              | ra_AvSuT_C   | ratio of Adverb POS count to Subordinating Conjunction count                   |
| 162   | Synta           | POSF_         | Part-of-Speech Features              | ra_AvCoT_C   | ratio of Adverb POS count to Coordinating Conjunction count                    |
| 163   | Synta           | POSF_         | Part-of-Speech Features              | to_SuTag_C   | total count of Subordinating Conjunction POS tags                              |
| 164   | Synta           | POSF_         | Part-of-Speech Features              | as_SuTag_C   | average count of Subordinating Conjunction POS tags per sentence               |
| 165   | Synta           | POSF_         | Part-of-Speech Features              | at_SuTag_C   | average count of Subordinating Conjunction POS tags per token                  |
| 166   | Synta           | POSF_         | Part-of-Speech Features              | ra_SuAjT_C   | ratio of Subordinating Conjunction POS count to Adjective POS count            |
| 167   | Synta           | POSF_         | Part-of-Speech Features              | ra_SuNoT_C   | ratio of Subordinating Conjunction POS count to Noun POS count                 |
| 168   | Synta           | POSF_         | Part-of-Speech Features              | ra_SuVeT_C   | ratio of Subordinating Conjunction POS count to Verb POS count                 |
| 169   | Synta           | POSF_         | Part-of-Speech Features              | ra_SuAvT_C   | ratio of Subordinating Conjunction POS count to Adverb POS count               |
| 170   | Synta           | POSF_         | Part-of-Speech Features              | ra_SuCoT_C   | ratio of Subordinating Conjunction POS count to Coordinating Conjunction count |
| 171   | Synta           | POSF_         | Part-of-Speech Features              | to_CoTag_C   | total count of Coordinating Conjunction POS tags                               |
| 172   | Synta           | POSF_         | Part-of-Speech Features              | as_CoTag_C   | average count of Coordinating Conjunction POS tags per sentence                |
| 173   | Synta           | POSF_         | Part-of-Speech Features              | at_CoTag_C   | average count of Coordinating Conjunction POS tags per token                   |
| 174   | Synta           | POSF_         | Part-of-Speech Features              | ra_CoAjT_C   | ratio of Coordinating Conjunction POS count to Adjective POS count             |
| 175   | Synta           | POSF_         | Part-of-Speech Features              | ra_CoNoT_C   | ratio of Coordinating Conjunction POS count to Noun POS count                  |
| 176   | Synta           | POSF_         | Part-of-Speech Features              | ra_CoVeT_C   | ratio of Coordinating Conjunction POS count to Verb POS count                  |
| 177   | Synta           | POSF_         | Part-of-Speech Features              | ra_CoAvT_C   | ratio of Coordinating Conjunction POS count to Adverb POS count                |
| 178   | Synta           | POSF_         | Part-of-Speech Features              | ra_CoSuT_C   | ratio of Coordinating Conjunction POS count to Subordinating Conjunction count |
| 179   | Synta           | POSF_         | Part-of-Speech Features              | to_ContW_C   | total count of Content words                                                   |
| 180   | Synta           | POSF_         | Part-of-Speech Features              | as_ContW_C   | average count of Content words per sentence                                    |
| 181   | Synta           | POSF_         | Part-of-Speech Features              | at_ContW_C   | average count of Content words per token                                       |
| 182   | Synta           | POSF_         | Part-of-Speech Features              | to_FuncW_C   | total count of Function words                                                  |
| 183   | Synta           | POSF_         | Part-of-Speech Features              | as_FuncW_C   | average count of Function words per sentence                                   |
| 184   | Synta           | POSF_         | Part-of-Speech Features              | at_FuncW_C   | average count of Function words per token                                      |
| 185   | Synta           | POSF_         | Part-of-Speech Features              | ra_CoFuW_C   | ratio of Content words to Function words                                       |
| 186   | LxSem     | VarF_         | Variation Ratio Features             | SimpNoV_S    | unique Nouns/total Nouns (Noun Variation-1)                                    |
| 187   | LxSem     | VarF_         | Variation Ratio Features             | SquaNoV_S    | (unique Nouns**2)/total Nouns (Squared Noun Variation-1)                       |
| 188   | LxSem     | VarF_         | Variation Ratio Features             | CorrNoV_S    | unique Nouns/sqrt(2*total Nouns) (Corrected Noun Variation-1)                  |
| 189   | LxSem     | VarF_         | Variation Ratio Features             | SimpVeV_S    | unique Verbs/total Verbs (Verb Variation-1)                                    |
| 190   | LxSem     | VarF_         | Variation Ratio Features             | SquaVeV_S    | (unique Verbs**2)/total Verbs (Squared Verb Variation-1)                       |
| 191   | LxSem     | VarF_         | Variation Ratio Features             | CorrVeV_S    | unique Verbs/sqrt(2*total Verbs) (Corrected Verb Variation-1)                  |
| 192   | LxSem     | VarF_         | Variation Ratio Features             | SimpAjV_S    | unique Adjectives/total Adjectives (Adjective Variation-1)                     |
| 193   | LxSem     | VarF_         | Variation Ratio Features             | SquaAjV_S    | (unique Adjectives**2)/total Adjectives (Squared Adjective Variation-1)        |
| 194   | LxSem     | VarF_         | Variation Ratio Features             | CorrAjV_S    | unique Adjectives/sqrt(2*total Adjectives) (Corrected Adjective Variation-1)   |
| 195   | LxSem     | VarF_         | Variation Ratio Features             | SimpAvV_S    | unique Adverbs/total Adverbs (AdVerb Variation-1)                              |
| 196   | LxSem     | VarF_         | Variation Ratio Features             | SquaAvV_S    | (unique Adverbs**2)/total Adverbs (Squared AdVerb Variation-1)                 |
| 197   | LxSem     | VarF_         | Variation Ratio Features             | CorrAvV_S    | unique Adverbs/sqrt(2*total Adverbs) (Corrected AdVerb Variation-1)            |
| 198   | LxSem     | TTRF_         | Type Token Ratio Features            | SimpTTR_S    | unique tokens/total tokens (TTR)                                               |
| 199   | LxSem     | TTRF_         | Type Token Ratio Features            | CorrTTR_S    | unique tokens/sqrt(2*total tokens) (Corrected TTR)                             |
| 200   | LxSem     | TTRF_         | Type Token Ratio Features            | BiLoTTR_S    | log(unique tokens)/log(total tokens) (Bi-Logarithmic TTR)                      |
| 201   | LxSem     | TTRF_         | Type Token Ratio Features            | UberTTR_S    | (log(unique tokens))^2/log(total tokens/unique tokens) (Uber Index)            |
| 202   | LxSem     | TTRF_         | Type Token Ratio Features            | MTLDTTR_S    | Measure of Textual Lexical Diversity (default TTR = 0.72)                      |
| 203   | LxSem     | PsyF_         | Psycholinguistic Features            | to_AAKuW_C   | total AoA (Age of Acquisition) of words                                        |
| 204   | LxSem     | PsyF_         | Psycholinguistic Features            | as_AAKuW_C   | average AoA of words per sentence                                              |
| 205   | LxSem     | PsyF_         | Psycholinguistic Features            | at_AAKuW_C   | average AoA of words per token                                                 |
| 206   | LxSem     | PsyF_         | Psycholinguistic Features            | to_AAKuL_C   | total lemmas AoA of lemmas                                                     |
| 207   | LxSem     | PsyF_         | Psycholinguistic Features            | as_AAKuL_C   | average lemmas AoA of lemmas per sentence                                      |
| 208   | LxSem     | PsyF_         | Psycholinguistic Features            | at_AAKuL_C   | average lemmas AoA of lemmas per token                                         |
| 209   | LxSem     | PsyF_         | Psycholinguistic Features            | to_AABiL_C   | total lemmas AoA of lemmas, Bird norm                                          |
| 210   | LxSem     | PsyF_         | Psycholinguistic Features            | as_AABiL_C   | average lemmas AoA of lemmas, Bird norm per sentence                           |
| 211   | LxSem     | PsyF_         | Psycholinguistic Features            | at_AABiL_C   | average lemmas AoA of lemmas, Bird norm per token                              |
| 212   | LxSem     | PsyF_         | Psycholinguistic Features            | to_AABrL_C   | total lemmas AoA of lemmas, Bristol norm                                       |
| 213   | LxSem     | PsyF_         | Psycholinguistic Features            | as_AABrL_C   | average lemmas AoA of lemmas, Bristol norm per sentence                        |
| 214   | LxSem     | PsyF_         | Psycholinguistic Features            | at_AABrL_C   | average lemmas AoA of lemmas, Bristol norm per token                           |
| 215   | LxSem     | PsyF_         | Psycholinguistic Features            | to_AACoL_C   | total AoA of lemmas, Cortese and Khanna norm                                   |
| 216   | LxSem     | PsyF_         | Psycholinguistic Features            | as_AACoL_C   | average AoA of lemmas, Cortese and Khanna norm per sentence                    |
| 217   | LxSem     | PsyF_         | Psycholinguistic Features            | at_AACoL_C   | average AoA of lemmas, Cortese and Khanna norm per token                       |
| 218   | LxSem     | WorF_         | Word Familiarity              | to_SbFrQ_C   | total SubtlexUS FREQcount value                                                |
| 219   | LxSem     | WorF_         | Word Familiarity              | as_SbFrQ_C   | average SubtlexUS FREQcount value per sentenc                                  |
| 220   | LxSem     | WorF_         | Word Familiarity              | at_SbFrQ_C   | average SubtlexUS FREQcount value per token                                    |
| 221   | LxSem     | WorF_         | Word Familiarity              | to_SbCDC_C   | total SubtlexUS CDcount value                                                  |
| 222   | LxSem     | WorF_         | Word Familiarity              | as_SbCDC_C   | average SubtlexUS CDcount value per sentence                                   |
| 223   | LxSem     | WorF_         | Word Familiarity              | at_SbCDC_C   | average SubtlexUS CDcount value per token                                      |
| 224   | LxSem     | WorF_         | Word Familiarity              | to_SbFrL_C   | total SubtlexUS FREQlow value                                                  |
| 225   | LxSem     | WorF_         | Word Familiarity              | as_SbFrL_C   | average SubtlexUS FREQlow value per sentence                                   |
| 226   | LxSem     | WorF_         | Word Familiarity              | at_SbFrL_C   | average SubtlexUS FREQlow value per token                                      |
| 227   | LxSem     | WorF_         | Word Familiarity              | to_SbCDL_C   | total SubtlexUS CDlow value                                                    |
| 228   | LxSem     | WorF_         | Word Familiarity              | as_SbCDL_C   | average SubtlexUS CDlow value per sentence                                     |
| 229   | LxSem     | WorF_         | Word Familiarity              | at_SbCDL_C   | average SubtlexUS CDlow value per token                                        |
| 230   | LxSem     | WorF_         | Word Familiarity              | to_SbSBW_C   | total SubtlexUS SUBTLWF value                                                  |
| 231   | LxSem     | WorF_         | Word Familiarity              | as_SbSBW_C   | average SubtlexUS SUBTLWF value per sentence                                   |
| 232   | LxSem     | WorF_         | Word Familiarity              | at_SbSBW_C   | average SubtlexUS SUBTLWF value per token                                      |
| 233   | LxSem     | WorF_         | Word Familiarity              | to_SbL1W_C   | total SubtlexUS Lg10WF value                                                   |
| 234   | LxSem     | WorF_         | Word Familiarity              | as_SbL1W_C   | average SubtlexUS Lg10WF value per sentence                                    |
| 235   | LxSem     | WorF_         | Word Familiarity              | at_SbL1W_C   | average SubtlexUS Lg10WF value per token                                       |
| 236   | LxSem     | WorF_         | Word Familiarity              | to_SbSBC_C   | total SubtlexUS SUBTLCD value                                                  |
| 237   | LxSem     | WorF_         | Word Familiarity              | as_SbSBC_C   | average SubtlexUS SUBTLCD value per sentence                                   |
| 238   | LxSem     | WorF_         | Word Familiarity              | at_SbSBC_C   | average SubtlexUS SUBTLCD value per token                                      |
| 239   | LxSem     | WorF_         | Word Familiarity              | to_SbL1C_C   | total SubtlexUS Lg10CD value                                                   |
| 240   | LxSem     | WorF_         | Word Familiarity              | as_SbL1C_C   | average SubtlexUS Lg10CD value per sentence                                    |
| 241   | LxSem     | WorF_         | Word Familiarity              | at_SbL1C_C   | average SubtlexUS Lg10CD value per token                                       |
| 242   | ShaTr     | ShaF_         | Shallow Features                     | TokSenM_S   | total count of tokens x total count of sentence                                |
| 243   | ShaTr     | ShaF_         | Shallow Features                     | TokSenS_S   | sqrt(total count of tokens x total count of sentence)                                |
| 244   | ShaTr     | ShaF_         | Shallow Features                     | TokSenL_S   | log(total count of tokens)/log(total count of sentence)                           |
| 245   | ShaTr     | ShaF_         | Shallow Features                     | as_Token_C   | average count of tokens per sentence                                           |
| 246   | ShaTr     | ShaF_         | Shallow Features                     | as_Sylla_C   | average count of syllables per sentence                                        |
| 247   | ShaTr     | ShaF_         | Shallow Features                     | at_Sylla_C         | average count of syllables per token                                           |
| 248   | ShaTr     | ShaF_         | Shallow Features                     | as_Chara_C   | average count of characters per sentence                                       |
| 249   | ShaTr     | ShaF_         | Shallow Features                     | at_Chara_C   | average count of characters per token                                          |
| 250   | ShaTr     | TraF_         | Traditional Formulas         | SmogInd_S    | Smog Index                                                                     |
| 251   | ShaTr     | TraF_         | Traditional Formulas         | ColeLia_S    | Coleman Liau Readability Score                                                 |
| 252   | ShaTr     | TraF_         | Traditional Formulas         | Gunning_S    | Gunning Fog Count Score                                                                    |
| 253   | ShaTr     | TraF_         | Traditional Formulas         | AutoRea_S    | New Automated Readability Index                                                    |
| 254   | ShaTr     | TraF_         | Traditional Formulas         | FleschG_S    | Flesch Kincaid Grade Level                                                           |
| 255   | ShaTr     | TraF_         | Traditional Formulas         | LinseaW_S    | Linsear Write Formula Score"""

lsca_names = lca_names + sca_names
name_map = {lsca_names[i]: full_names[i] for i in range(len(lsca_names))}

type_map = {lingfeat_names[i]: lingfeat_subtypes[i] for i in range(len(lingfeat_names))}
type_map.update({n: 'lexical' for n in lca_names})
type_map.update({n: 'syntax' for n in sca_names})


# from lingfeat_full_names import lf_names
lf_names = lf_names.split('\n')

lf_names = [tuple(x.split('|')[5:7]) for x in lf_names]
lf_map = {k.strip(): v.strip() for k,v in lf_names}
name_map.update(lf_map)

used_indices = [
        1, 2, 3, 4, 5, 6, 7, 10, 11, 18, 25, 30, 31, 34, 35, 36, 37, 39, 40, 41, 57,
        63, 64, 65, 66, 67, 68, 73, 121, 124, 129, 134, 136, 254,
        257, 258, 261, 263, 272, 274 
        ]

eval_indices = [4,5,6,18,257,272]
eval_indices = [used_indices.index(idx) for idx in eval_indices]

lftk_df = pd.read_csv('lftk_ids.csv')

lftk_types = {row['key']: row['domain'] for i,row in lftk_df.iterrows()}
type_map.update(lftk_types)

type_map = {k:\
        'syntax' if v == 'surface'\
        else 'lexical' if v == 'lexico-semantics'\
        else v\
        for k,v in type_map.items()}

lftkplus_names = lca_names + sca_names + lftk_names
lftkplus_names = [lftkplus_names[i] for i in used_indices]

lftk_map = {k: v for k,v in zip(lftk_names, lftk_full_names)}
name_map.update(lftk_map)
rev_name_map = {v: k for k,v in name_map.items()}