Spaces:
Sleeping
Sleeping
File size: 29,553 Bytes
20b7679 674b430 20b7679 674b430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
import types
import torch
import torch.nn.functional as F
import numpy as np
from torch import nn
from transformers import T5ForConditionalGeneration, T5EncoderModel, AutoModel, LogitsProcessor, LogitsProcessorList
from functools import partial
from compute_lng import compute_lng
from undecorate import unwrap
from types import MethodType
from utils import *
from ling_disc import DebertaReplacedTokenizer
from const import *
def vae_sample(mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu
class VAE(nn.Module):
def __init__(self, args):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(args.input_dim, args.hidden_dim),
nn.ReLU(),
nn.Linear(args.hidden_dim, args.hidden_dim),
nn.ReLU(),
)
self.decoder = nn.Sequential(
nn.Linear(args.latent_dim, args.hidden_dim),
nn.ReLU(),
nn.Linear(args.hidden_dim, args.hidden_dim),
nn.ReLU(),
nn.Linear(args.hidden_dim, args.input_dim),
)
self.fc_mu = nn.Linear(args.hidden_dim, args.latent_dim)
self.fc_var = nn.Linear(args.hidden_dim, args.latent_dim)
def forward(self, x):
h = self.encoder(x)
mu = self.fc_mu(h)
logvar = self.fc_var(h)
x = vae_sample(mu, logvar)
o = self.decoder(x)
return o, (mu, logvar)
class LingGenerator(nn.Module):
def __init__(self, args, hidden_dim=1000):
super().__init__()
self.gen = T5EncoderModel.from_pretrained('google/flan-t5-small')
self.hidden_size = self.gen.config.d_model
self.ling_embed = nn.Linear(args.lng_dim, self.hidden_size)
# self.gen = nn.Sequential(
# nn.Linear(args.lng_dim, 2*hidden_dim),
# nn.ReLU(),
# nn.BatchNorm1d(2*hidden_dim),
# nn.Linear(2*hidden_dim, 2*hidden_dim),
# nn.ReLU(),
# nn.BatchNorm1d(2*hidden_dim),
# nn.Linear(2*hidden_dim, hidden_dim),
# nn.ReLU(),
# )
self.gen_type = args.linggen_type
self.gen_input = args.linggen_input
if self.gen_type == 'vae':
self.gen_mu = nn.Linear(hidden_dim, args.lng_dim)
self.gen_logvar = nn.Linear(hidden_dim, args.lng_dim)
elif self.gen_type == 'det':
self.projection = nn.Linear(self.hidden_size, args.lng_dim)
def forward(self, batch):
inputs_embeds = self.gen.shared(batch['sentence1_input_ids'])
inputs_att_mask = batch['sentence1_attention_mask']
bs = inputs_embeds.shape[0]
if self.gen_input == 's+l':
sent1_ling = self.ling_embed(batch['sentence1_ling'])
sent1_ling = sent1_ling.view(bs, 1, -1)
inputs_embeds = inputs_embeds + sent1_ling
gen = self.gen(inputs_embeds=inputs_embeds,
attention_mask=inputs_att_mask).last_hidden_state.mean(1)
# gen = self.gen(batch['sentence1_ling'])
cache = {}
if self.gen_type == 'vae':
mu = self.gen_mu(gen)
logvar = self.gen_logvar(gen)
output = vae_sample(mu, logvar)
cache['linggen_mu'] = mu
cache['linggen_logvar'] = logvar
elif self.gen_type == 'det':
output = self.projection(gen)
return output, cache
class LingDisc(nn.Module):
def __init__(self,
model_name,
disc_type,
disc_ckpt,
lng_dim=40,
quant_nbins=1,
disc_lng_dim=None,
lng_ids=None,
**kwargs):
super().__init__()
if disc_type == 't5':
self.encoder = T5EncoderModel.from_pretrained(model_name)
hidden_dim = self.encoder.config.d_model
self.dropout = nn.Dropout(0.2)
self.lng_dim = disc_lng_dim if disc_lng_dim else lng_dim
self.quant = quant_nbins > 1
self.quant = False
if self.quant:
self.ling_classifier = nn.Linear(hidden_dim, self.lng_dim * quant_nbins)
else:
self.ling_classifier = nn.Linear(hidden_dim, self.lng_dim)
lng_ids = torch.tensor(lng_ids) if lng_ids is not None else None
# from const import used_indices
# lng_ids = torch.tensor(used_indices)
self.register_buffer('lng_ids', lng_ids)
elif disc_type == 'deberta':
self.encoder= DebertaReplacedTokenizer.from_pretrained(
pretrained_model_name_or_path=disc_ckpt,
tok_model_name = model_name,
problem_type='regression', num_labels=40)
self.quant = False
self.disc_type = disc_type
def forward(self, **batch):
if not 'attention_mask' in batch:
if 'input_ids' in batch:
att_mask = torch.ones_like(batch['input_ids'])
else:
att_mask = torch.ones_like(batch['logits'])[:,:,0]
else:
att_mask = batch['attention_mask']
if 'input_ids' in batch:
enc_output = self.encoder(input_ids=batch['input_ids'],
attention_mask=att_mask)
elif 'logits' in batch:
logits = batch['logits']
scores = F.softmax(logits, dim = -1)
onehot = F.one_hot(logits.argmax(-1), num_classes=logits.shape[2]).float().to(logits.device)
onehot_ = scores - scores.detach() + onehot
embed_layer = self.encoder.get_input_embeddings()
if isinstance(embed_layer, nn.Sequential):
for i, module in enumerate(embed_layer):
if i == 0:
embeds = torch.matmul(onehot_, module.weight)
else:
embeds = module(embeds)
else:
embeds = onehot_ @ embed_layer.weight
embeds = torch.matmul(onehot_, embed_layer.weight)
enc_output = self.encoder(inputs_embeds=embeds,
attention_mask=att_mask)
if self.disc_type == 't5':
sent_emb = self.dropout(enc_output.last_hidden_state.mean(1))
bs = sent_emb.shape[0]
output = self.ling_classifier(sent_emb)
if self.quant:
output = output.reshape(bs, -1, self.lng_dim)
if self.lng_ids is not None:
output = torch.index_select(output, 1, self.lng_ids)
elif self.disc_type == 'deberta':
output = enc_output.logits
return output
class SemEmb(nn.Module):
def __init__(self, backbone, sep_token_id):
super().__init__()
self.backbone = backbone
self.sep_token_id = sep_token_id
hidden_dim = self.backbone.config.d_model
self.projection = nn.Sequential(nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(hidden_dim, 1))
def forward(self, **batch):
bs = batch['sentence1_attention_mask'].shape[0]
ones = torch.ones((bs, 1), device=batch['sentence1_attention_mask'].device)
sep = torch.ones((bs, 1), dtype=torch.long,
device=batch['sentence1_attention_mask'].device) * self.sep_token_id
att_mask = torch.cat([batch['sentence1_attention_mask'], ones, batch['sentence2_attention_mask']], dim=1)
if 'logits' in batch:
input_ids = torch.cat([batch['sentence1_input_ids'], sep], dim=1)
embeds1 = self.backbone.shared(input_ids)
logits = batch['logits']
scores = F.softmax(logits, dim = -1)
onehot = F.one_hot(logits.argmax(-1), num_classes=logits.shape[2]).float().to(logits.device)
onehot_ = scores - scores.detach() + onehot
embeds2 = onehot_ @ self.backbone.shared.weight
embeds1_2 = torch.cat([embeds1, embeds2], dim=1)
hidden_units = self.backbone(inputs_embeds=embeds1_2,
attention_mask=att_mask).last_hidden_state.mean(1)
elif 'sentence2_input_ids' in batch:
input_ids = torch.cat([batch['sentence1_input_ids'], sep, batch['sentence2_input_ids']], dim=1)
hidden_units = self.backbone(input_ids=input_ids,
attention_mask=att_mask).last_hidden_state.mean(1)
probs = self.projection(hidden_units)
return probs
def prepare_inputs_for_generation(
combine_method,
ling2_only,
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
sent1_ling=None,
sent2_ling=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
input_ids = input_ids.clone()
decoder_inputs_embeds = self.shared(input_ids)
if combine_method == 'decoder_add_first':
sent2_ling = torch.cat([sent2_ling,
torch.repeat_interleave(torch.zeros_like(sent2_ling), input_ids.shape[1] - 1, dim=1)], dim = 1)
if combine_method == 'decoder_concat':
if ling2_only:
decoder_inputs_embeds = torch.cat([sent2_ling, decoder_inputs_embeds], dim=1)
else:
decoder_inputs_embeds = torch.cat([sent1_ling, sent2_ling, decoder_inputs_embeds], dim=1)
elif combine_method == 'decoder_add'or (past_key_values is None and combine_method == 'decoder_add_first'):
if ling2_only:
decoder_inputs_embeds = decoder_inputs_embeds + sent2_ling
else:
decoder_inputs_embeds = decoder_inputs_embeds + sent1_ling + sent2_ling
return {
"decoder_inputs_embeds": decoder_inputs_embeds,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
class LogitsAdd(LogitsProcessor):
def __init__(self, sent2_ling):
super().__init__()
self.sent2_ling = sent2_ling
def __call__(self, input_ids, scores):
return scores + self.sent2_ling
class EncoderDecoderVAE(nn.Module):
def __init__(self, args, pad_token_id, sepeos_token_id, vocab_size = 32128):
super().__init__()
self.backbone = T5ForConditionalGeneration.from_pretrained(args.model_name)
self.backbone.prepare_inputs_for_generation = types.MethodType(
partial(prepare_inputs_for_generation, args.combine_method, args.ling2_only),
self.backbone)
self.args = args
self.pad_token_id = pad_token_id
self.eos_token_id = sepeos_token_id
hidden_dim = self.backbone.config.d_model if not 'logits' in args.combine_method else vocab_size
if args.combine_method == 'fusion1':
self.fusion = nn.Sequential(
nn.Linear(hidden_dim + 2 * args.lng_dim, hidden_dim),
)
elif args.combine_method == 'fusion2':
self.fusion = nn.Sequential(
nn.Linear(hidden_dim + 2 * args.lng_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
)
elif 'concat' in args.combine_method or 'add' in args.combine_method:
if args.ling_embed_type == 'two-layer':
self.ling_embed = nn.Sequential(
nn.Linear(args.lng_dim, args.lng_dim),
nn.ReLU(),
nn.Linear(args.lng_dim, hidden_dim),
)
else:
self.ling_embed = nn.Linear(args.lng_dim, hidden_dim)
self.ling_dropout = nn.Dropout(args.ling_dropout)
if args.ling_vae:
self.ling_mu = nn.Linear(hidden_dim, hidden_dim)
self.ling_logvar = nn.Linear(hidden_dim, hidden_dim)
nn.init.xavier_uniform_(self.ling_embed.weight)
nn.init.xavier_uniform_(self.ling_mu.weight)
nn.init.xavier_uniform_(self.ling_logvar.weight)
generate_with_grad = unwrap(self.backbone.generate)
self.backbone.generate_with_grad = MethodType(generate_with_grad, self.backbone)
def get_fusion_layer(self):
if 'fusion' in self.args.combine_method:
return self.fusion
elif 'concat' in self.args.combine_method or 'add' in self.args.combine_method:
return self.ling_embed
else:
return None
def sample(self, mu, logvar):
std = torch.exp(0.5 * logvar)
return mu + std * torch.randn_like(std)
def encode(self, batch):
if 'inputs_embeds' in batch:
inputs_embeds = batch['inputs_embeds']
else:
inputs_embeds = self.backbone.shared(batch['sentence1_input_ids'])
inputs_att_mask = batch['sentence1_attention_mask']
bs = inputs_embeds.shape[0]
cache = {}
if self.args.combine_method in ('input_concat', 'input_add'):
if 'sent1_ling_embed' in batch:
sent1_ling = batch['sent1_ling_embed']
else:
sent1_ling = self.ling_embed(self.ling_dropout(batch['sentence1_ling']))
if 'sent2_ling_embed' in batch:
sent2_ling = batch['sent2_ling_embed']
else:
sent2_ling = self.ling_embed(self.ling_dropout(batch['sentence2_ling']))
if self.args.ling_vae:
sent1_ling = F.leaky_relu(sent1_ling)
sent1_mu, sent1_logvar = self.ling_mu(sent1_ling), self.ling_logvar(sent1_ling)
sent1_ling = self.sample(sent1_mu, sent1_logvar)
sent2_ling = F.leaky_relu(sent2_ling)
sent2_mu, sent2_logvar = self.ling_mu(sent2_ling), self.ling_logvar(sent2_ling)
sent2_ling = self.sample(sent2_mu, sent2_logvar)
cache.update({'sent1_mu': sent1_mu, 'sent1_logvar': sent1_logvar,
'sent2_mu': sent2_mu, 'sent2_logvar': sent2_logvar,
'sent1_ling': sent1_ling, 'sent2_ling': sent2_ling})
else:
cache.update({'sent1_ling': sent1_ling, 'sent2_ling': sent2_ling})
sent1_ling = sent1_ling.view(bs, 1, -1)
sent2_ling = sent2_ling.view(bs, 1, -1)
if self.args.combine_method == 'input_concat':
if self.args.ling2_only:
inputs_embeds = torch.cat([inputs_embeds, sent2_ling], dim=1)
inputs_att_mask = torch.cat([inputs_att_mask,
torch.ones((bs, 1)).to(inputs_embeds.device)], dim=1)
else:
inputs_embeds = torch.cat([inputs_embeds, sent1_ling, sent2_ling], dim=1)
inputs_att_mask = torch.cat([inputs_att_mask,
torch.ones((bs, 2)).to(inputs_embeds.device)], dim=1)
elif self.args.combine_method == 'input_add':
if self.args.ling2_only:
inputs_embeds = inputs_embeds + sent2_ling
else:
inputs_embeds = inputs_embeds + sent1_ling + sent2_ling
return self.backbone.encoder(inputs_embeds=inputs_embeds,
attention_mask=inputs_att_mask), inputs_att_mask, cache
def decode(self, batch, enc_output, inputs_att_mask, generate):
bs = inputs_att_mask.shape[0]
cache = {}
if self.args.combine_method in ('embed_concat', 'decoder_concat', 'decoder_add', 'logits_add', 'decoder_add_first'):
if 'sent1_ling_embed' in batch:
sent1_ling = batch['sent1_ling_embed']
elif 'sentence1_ling' in batch:
sent1_ling = self.ling_embed(self.ling_dropout(batch['sentence1_ling']))
else:
sent1_ling = None
if 'sent2_ling_embed' in batch:
sent2_ling = batch['sent2_ling_embed']
else:
sent2_ling = self.ling_embed(self.ling_dropout(batch['sentence2_ling']))
if self.args.ling_vae:
sent1_ling = F.leaky_relu(sent1_ling)
sent1_mu, sent1_logvar = self.ling_mu(sent1_ling), self.ling_logvar(sent1_ling)
sent1_ling = self.sample(sent1_mu, sent1_logvar)
sent2_ling = F.leaky_relu(sent2_ling)
sent2_mu, sent2_logvar = self.ling_mu(sent2_ling), self.ling_logvar(sent2_ling)
sent2_ling = self.sample(sent2_mu, sent2_logvar)
cache.update({'sent1_mu': sent1_mu, 'sent1_logvar': sent1_logvar,
'sent2_mu': sent2_mu, 'sent2_logvar': sent2_logvar,
'sent1_ling': sent1_ling, 'sent2_ling': sent2_ling})
else:
cache.update({'sent2_ling': sent2_ling})
if sent1_ling is not None:
cache.update({'sent1_ling': sent1_ling})
if sent1_ling is not None:
sent1_ling = sent1_ling.view(bs, 1, -1)
sent2_ling = sent2_ling.view(bs, 1, -1)
if self.args.combine_method == 'decoder_add_first' and not generate:
sent2_ling = torch.cat([sent2_ling,
torch.repeat_interleave(torch.zeros_like(sent2_ling), batch['sentence2_input_ids'].shape[1] - 1, dim=1)], dim = 1)
else:
sent1_ling, sent2_ling = None, None
if self.args.combine_method == 'embed_concat':
enc_output.last_hidden_state = torch.cat([enc_output.last_hidden_state,
sent1_ling, sent2_ling], dim=1)
inputs_att_mask = torch.cat([inputs_att_mask,
torch.ones((bs, 2)).to(inputs_att_mask.device)], dim=1)
elif 'fusion' in self.args.combine_method:
sent1_ling = batch['sentence1_ling'].unsqueeze(1)\
.expand(-1, enc_output.last_hidden_state.shape[1], -1)
sent2_ling = batch['sentence2_ling'].unsqueeze(1)\
.expand(-1, enc_output.last_hidden_state.shape[1], -1)
if self.args.ling2_only:
combined_embedding = torch.cat([enc_output.last_hidden_state, sent2_ling], dim=2)
else:
combined_embedding = torch.cat([enc_output.last_hidden_state, sent1_ling, sent2_ling], dim=2)
enc_output.last_hidden_state = self.fusion(combined_embedding)
if generate:
if self.args.combine_method == 'logits_add':
logits_processor = LogitsProcessorList([LogitsAdd(sent2_ling.view(bs, -1))])
else:
logits_processor = LogitsProcessorList()
dec_output = self.backbone.generate_with_grad(
attention_mask=inputs_att_mask,
encoder_outputs=enc_output,
sent1_ling=sent1_ling,
sent2_ling=sent2_ling,
return_dict_in_generate=True,
output_scores=True,
logits_processor = logits_processor,
# renormalize_logits=True,
# do_sample=True,
# top_p=0.8,
eos_token_id=self.eos_token_id,
# min_new_tokens=3,
# repetition_penalty=1.2,
max_length=self.args.max_length,
)
scores = torch.stack(dec_output.scores, 1)
cache.update({'scores': scores})
return dec_output.sequences, cache
decoder_input_ids = self.backbone._shift_right(batch['sentence2_input_ids'])
decoder_inputs_embeds = self.backbone.shared(decoder_input_ids)
decoder_att_mask = batch['sentence2_attention_mask']
labels = batch['sentence2_input_ids'].clone()
labels[labels == self.pad_token_id] = -100
if self.args.combine_method == 'decoder_concat':
if self.args.ling2_only:
decoder_inputs_embeds = torch.cat([sent2_ling, decoder_inputs_embeds], dim=1)
decoder_att_mask = torch.cat([torch.ones((bs, 1)).to(decoder_inputs_embeds.device), decoder_att_mask], dim=1)
labels = torch.cat([torch.ones((bs, 1), dtype=torch.int64).to(decoder_inputs_embeds.device) * self.pad_token_id,
labels], dim=1)
else:
decoder_inputs_embeds = torch.cat([sent1_ling, sent2_ling, decoder_inputs_embeds], dim=1)
decoder_att_mask = torch.cat([torch.ones((bs, 2)).to(decoder_inputs_embeds.device), decoder_att_mask], dim=1)
labels = torch.cat([torch.ones((bs, 2), dtype=torch.int64).to(decoder_inputs_embeds.device) * self.pad_token_id,
labels], dim=1)
elif self.args.combine_method == 'decoder_add' or self.args.combine_method == 'decoder_add_first' :
if self.args.ling2_only:
decoder_inputs_embeds = decoder_inputs_embeds + self.args.combine_weight * sent2_ling
else:
decoder_inputs_embeds = decoder_inputs_embeds + sent1_ling + sent2_ling
dec_output = self.backbone(
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_attention_mask=decoder_att_mask,
encoder_outputs=enc_output,
attention_mask=inputs_att_mask,
labels=labels,
)
if self.args.combine_method == 'logits_add':
dec_output.logits = dec_output.logits + self.args.combine_weight * sent2_ling
vocab_size = dec_output.logits.size(-1)
dec_output.loss = F.cross_entropy(dec_output.logits.view(-1, vocab_size), labels.view(-1))
return dec_output, cache
def forward(self, batch, generate=False):
enc_output, enc_att_mask, cache = self.encode(batch)
dec_output, cache2 = self.decode(batch, enc_output, enc_att_mask, generate)
cache.update(cache2)
return dec_output, enc_output, cache
def infer_with_cache(self, batch):
dec_output, _, cache = self(batch, generate = True)
return dec_output, cache
def infer(self, batch):
dec_output, _ = self.infer_with_cache(batch)
return dec_output
def infer_with_feedback_BP(self, ling_disc, sem_emb, batch, tokenizer):
from torch.autograd import grad
interpolations = []
def line_search():
best_val = None
best_loss = None
eta = 1e3
sem_prob = 1
patience = 4
while patience > 0:
param_ = param - eta * grads
with torch.no_grad():
new_loss, pred = get_loss(param_)
max_len = pred.shape[1]
lens = torch.where(pred == self.eos_token_id, 1, 0).argmax(-1) + 1
batch.update({
'sentence2_input_ids': pred,
'sentence2_attention_mask': sequence_mask(lens, max_len = max_len)
})
sem_prob = torch.sigmoid(sem_emb(**batch)).item()
# if sem_prob <= 0.1:
# patience -= 1
if new_loss < loss and sem_prob >= 0.90 and lens.item() > 1:
return param_
eta *= 2.25
patience -= 1
return False
def get_loss(param):
if self.args.feedback_param == 'l':
batch.update({'sent2_ling_embed': param})
elif self.args.feedback_param == 's':
batch.update({'inputs_embeds': param})
if self.args.feedback_param == 'logits':
logits = param
pred = param.argmax(-1)
else:
pred, cache = self.infer_with_cache(batch)
logits = cache['scores']
out = ling_disc(logits = logits)
probs = F.softmax(out, 1)
if ling_disc.quant:
loss = F.cross_entropy(out, batch['sentence2_discr'])
else:
loss = F.mse_loss(out, batch['sentence2_ling'])
return loss, pred
if self.args.feedback_param == 'l':
ling2_embed = self.ling_embed(batch['sentence2_ling'])
param = torch.nn.Parameter(ling2_embed, requires_grad = True)
elif self.args.feedback_param == 's':
inputs_embeds = self.backbone.shared(batch['sentence1_input_ids'])
param = torch.nn.Parameter(inputs_embeds, requires_grad = True)
elif self.args.feedback_param == 'logits':
logits = self.infer_with_cache(batch)[1]['scores']
param = torch.nn.Parameter(logits, requires_grad = True)
target_np = batch['sentence2_ling'][0].cpu().numpy()
while True:
loss, pred = get_loss(param)
pred_text = tokenizer.batch_decode(pred.cpu().numpy(),
skip_special_tokens=True)[0]
interpolations.append(pred_text)
if loss < 1:
break
self.zero_grad()
grads = grad(loss, param)[0]
param = line_search()
if param is False:
break
return pred, [pred_text, interpolations]
def set_grad(module, state):
if module is not None:
for p in module.parameters():
p.requires_grad = state
def set_grad_except(model, name, state):
for n, p in model.named_parameters():
if not name in n:
p.requires_grad = state
class SemEmbPipeline():
def __init__(self,
ckpt = "/data/mohamed/checkpoints/ling_conversion_sem_emb_best.pt"):
self.tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
self.model = SemEmb(T5EncoderModel.from_pretrained('google/flan-t5-base'), self.tokenizer.get_vocab()['</s>'])
state = torch.load(ckpt)
self.model.load_state_dict(state['model'], strict=False)
self.model.eval()
self.model.cuda()
def __call__(self, sentence1, sentence2):
sentence1 = self.tokenizer(sentence1, return_attention_mask = True, return_tensors = 'pt')
sentence2 = self.tokenizer(sentence2, return_attention_mask = True, return_tensors = 'pt')
sem_logit = self.model(
sentence1_input_ids = sentence1.input_ids.cuda(),
sentence1_attention_mask = sentence1.attention_mask.cuda(),
sentence2_input_ids = sentence2.input_ids.cuda(),
sentence2_attention_mask = sentence2.attention_mask.cuda(),
)
sem_prob = torch.sigmoid(sem_logit).item()
return sem_prob
class LingDiscPipeline():
def __init__(self,
model_name="google/flan-t5-base",
disc_type='deberta',
disc_ckpt='/data/mohamed/checkpoints/ling_disc/deberta-v3-small_flan-t5-base_40',
# disc_type='t5',
# disc_ckpt='/data/mohamed/checkpoints/ling_conversion_ling_disc.pt',
):
self.tokenizer = T5Tokenizer.from_pretrained(model_name)
self.model = LingDisc(model_name, disc_type, disc_ckpt)
self.model.eval()
self.model.cuda()
def __call__(self, sentence):
inputs = self.tokenizer(sentence, return_tensors = 'pt')
with torch.no_grad():
ling_pred = self.model(input_ids=inputs.input_ids.cuda())
return ling_pred
def get_model(args, tokenizer, device):
if args.pretrain_disc or args.disc_loss or args.disc_ckpt:
ling_disc = LingDisc(args.model_name, args.disc_type, args.disc_ckpt).to(device)
else:
ling_disc = None
if args.linggen_type != 'none':
ling_gen = LingGenerator(args).to(device)
if args.sem_loss or args.sem_ckpt:
if args.sem_loss_type == 'shared':
sem_emb = seld.backbone.encoder
elif args.sem_loss_type == 'dedicated':
sem_emb = SemEmb(T5EncoderModel.from_pretrained('google/flan-t5-base'), tokenizer.eos_token_id).to(device)
else:
raise NotImplementedError('Semantic loss type')
else:
sem_emb = None
if not args.pretrain_disc:
model = EncoderDecoderVAE(args, tokenizer.pad_token_id, tokenizer.eos_token_id).to(device)
if args.use_lora:
target_modules = ["Attention.k", "Attention.q", "Attention.v", "Attention.o", "lm_head", "wi_0", "wi_1", "wo"]
target_modules = '|'.join(f'(.*{module})' for module in target_modules)
target_modules = f'backbone.({target_modules})'
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_r * 2,
target_modules=target_modules,
lora_dropout=0.1,
bias="lora_only",
modules_to_save=['ling_embed'],
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
else:
model = ling_disc
return model, ling_disc, sem_emb
|