Spaces:
Sleeping
Sleeping
File size: 8,037 Bytes
b028d48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import string,re,sys,os,random,glob
from math import sqrt,log
# adjust minimum sample size here
standard=50
# Returns the keys of dictionary d sorted by their values
def sort_by_value(d):
items=d.items()
backitems=[ [v[1],v[0]] for v in items]
backitems.sort()
return [ backitems[i][1] for i in range(0,len(backitems))]
# NDW for first z words in a sample
def getndwfirstz(z,lemmalist):
ndwfirstztype={}
for lemma in lemmalist[:z]:
ndwfirstztype[lemma]=1
return len(ndwfirstztype.keys())
# NDW expected random z words, 10 trials
def getndwerz(z,lemmalist):
ndwerz=0
for i in range(10):
ndwerztype={}
erzlemmalist=random.sample(lemmalist,z)
for lemma in erzlemmalist:
ndwerztype[lemma]=1
ndwerz+=len(ndwerztype.keys())
return ndwerz/10.0
# NDW expected random sequences of z words, 10 trials
def getndwesz(z,lemmalist):
ndwesz=0
for i in range(10):
ndwesztype={}
startword=random.randint(0,len(lemmalist)-z)
eszlemmalist=lemmalist[startword:startword+z]
for lemma in eszlemmalist:
ndwesztype[lemma]=1
ndwesz+=len(ndwesztype.keys())
return ndwesz/10.0
# MSTTR
def getmsttr(z,lemmalist):
samples=0
msttr=0.0
while len(lemmalist)>=z:
samples+=1
msttrtype={}
for lemma in lemmalist[:z]:
msttrtype[lemma]=1
msttr+=len(msttrtype.keys())/float(z)
lemmalist=lemmalist[z:]
return msttr/samples
def isLetterNumber(character):
if character in string.printable and not character in string.punctuation:
return 1
return 0
def isSentence(line):
for character in line:
if isLetterNumber(character):
return 1
return 0
def division(x,y):
if y==0:
return 0
else:
return float(x)/y
# reads information from bnc wordlist
adjdict={}
verbdict={}
noundict={}
worddict={}
wordlistfile=open("bnc_all_filtered.txt","r")
wordlist=wordlistfile.readlines()
wordlistfile.close()
for word in wordlist:
wordinfo=word.strip()
if not wordinfo or "Total words" in wordinfo:
continue
infolist=wordinfo.split()
lemma=infolist[0]
pos=infolist[1]
frequency=int(infolist[2])
worddict[lemma]=worddict.get(lemma,0)+frequency
if pos=="Adj":
adjdict[lemma]=adjdict.get(lemma,0)+frequency
elif pos=="Verb":
verbdict[lemma]=verbdict.get(lemma,0)+frequency
elif pos=="NoC" or pos=="NoP":
noundict[lemma]=noundict.get(lemma,0)+frequency
wordranks=sort_by_value(worddict)
verbranks=sort_by_value(verbdict)
directoryPath=sys.argv[1]
print "filename, wordtypes, swordtypes, lextypes, slextypes, wordtokens, swordtokens, lextokens, slextokens, ld, ls1, ls2, vs1, vs2, cvs1, ndw, ndwz, ndwerz, ndwesz, ttr, msttr, cttr, rttr, logttr, uber, lv, vv1, svv1, cvv1, vv2, nv, adjv, advv, modv"
for filename in glob.glob( os.path.join(directoryPath, '*') ):
lemfile=open(filename,"r")
lemlines=lemfile.readlines()
lemfile.close()
filename=filename.split("/")[-1]
output=filename
if not lemlines:
output+=",0.0"*31
print output
continue
# process input file
wordtypes={}
wordtokens=0
swordtypes={}
swordtokens=0
lextypes={}
lextokens=0
slextypes={}
slextokens=0
verbtypes={}
verbtokens=0
sverbtypes={}
adjtypes={}
adjtokens=0
advtypes={}
advtokens=0
nountypes={}
nountokens=0
lemmaposlist=[]
lemmalist=[]
for lemline in lemlines:
lemline=lemline.strip()
lemline=lemline.lower()
if not isSentence(lemline):
continue
lemmas=lemline.split()
for lemma in lemmas:
word=lemma.split("_")[0]
pos=lemma.split("_")[-1]
if (not pos in string.punctuation) and pos!="sent" and pos!="sym":
lemmaposlist.append(lemma)
lemmalist.append(word)
wordtokens+=1
wordtypes[word]=1
if (not word in wordranks[-2000:]) and pos != "cd":
swordtypes[word]=1
swordtokens+=1
if pos[0]=="n":
lextypes[word]=1
nountypes[word]=1
lextokens+=1
nountokens+=1
if not word in wordranks[-2000:]:
slextypes[word]=1
slextokens+=1
elif pos[0]=="j":
lextypes[word]=1
adjtypes[word]=1
lextokens+=1
adjtokens+=1
if not word in wordranks[-2000:]:
slextypes[word]=1
slextokens+=1
elif pos[0]=="r" and (adjdict.has_key(word) or (word[-2:]=="ly" and adjdict.has_key(word[:-2]))):
lextypes[word]=1
advtypes[word]=1
lextokens+=1
advtokens+=1
if not word in wordranks[-2000:]:
slextypes[word]=1
slextokens+=1
elif pos[0]=="v" and not word in ["be","have"]:
verbtypes[word]=1
verbtokens+=1
lextypes[word]=1
lextokens+=1
if not word in wordranks[-2000:]:
sverbtypes[word]=1
slextypes[word]=1
slextokens+=1
# 1. lexical density
ld=division(lextokens,wordtokens)
# 2. lexical sophistication
# 2.1 lexical sophistication
ls1=division(slextokens,lextokens)
ls2=division(len(swordtypes.keys()),len(wordtypes.keys()))
# 2.2 verb sophistication
vs1=division(len(sverbtypes.keys()),verbtokens)
vs2=division(len(sverbtypes.keys())*len(sverbtypes.keys()),verbtokens)
cvs1=division(len(sverbtypes.keys()),sqrt(2*verbtokens))
# 3 lexical diversity or variation
# 3.1 NDW, may adjust the values of "standard"
ndw=ndwz=ndwerz=ndwesz=len(wordtypes.keys())
if len(lemmalist)>=standard:
ndwz=getndwfirstz(standard,lemmalist)
ndwerz=getndwerz(standard,lemmalist)
ndwesz=getndwesz(standard,lemmalist)
# 3.2 TTR
ttr=msttr=division(len(wordtypes.keys()),wordtokens)
if len(lemmalist)>=standard:
msttr=getmsttr(standard,lemmalist)
cttr=division(len(wordtypes.keys()),sqrt(2*wordtokens))
rttr=division(len(wordtypes.keys()),sqrt(wordtokens))
logttr=division(log(len(wordtypes.keys())),log(wordtokens))
uber=division((log(wordtokens,10)*log(wordtokens,10)),log(wordtokens/float(len(wordtypes.keys())),10))
# 3.3 verb diversity
vv1=division(len(verbtypes.keys()),verbtokens)
svv1=division(len(verbtypes.keys())*len(verbtypes.keys()),verbtokens)
cvv1=division(len(verbtypes.keys()),sqrt(2*verbtokens))
# 3.4 lexical diversity
lv=division(len(lextypes.keys()),lextokens)
vv2=division(len(verbtypes.keys()),lextokens)
nv=division(len(nountypes.keys()),nountokens)
adjv=division(len(adjtypes.keys()),lextokens)
advv=division(len(advtypes.keys()),lextokens)
modv=division((len(advtypes.keys())+len(adjtypes.keys())),lextokens)
output=filename
for measure in [len(wordtypes.keys()), len(swordtypes.keys()), len(lextypes.keys()), len(slextypes.keys()), wordtokens, swordtokens, lextokens, slextokens, ld, ls1, ls2, vs1, vs2, cvs1, ndw, ndwz, ndwerz, ndwesz, ttr, msttr, cttr, rttr, logttr, uber, lv, vv1, svv1, cvv1, vv2, nv, adjv, advv, modv]:
if type(measure)==type(0.0):
measure="%.2f" % measure
output+=", "+str(measure)
print output
|