LingConv / app.py
mohdelgaar's picture
fix downloads
441a14f
raw
history blame
15.1 kB
import nltk
import spacy
nltk.download('wordnet')
spacy.cli.download('en_core_web_sm')
import torch
import joblib, json
import numpy as np
import pandas as pd
import gradio as gr
from const import used_indices, name_map
from model import get_model
from options import parse_args
from transformers import T5Tokenizer
from compute_lng import compute_lng
def process_examples(samples, full_names):
processed = []
for sample in samples:
processed.append([
sample['sentence1'],
pd.DataFrame({'Index': full_names, 'Source': sample['sentence1_ling'], 'Target': sample['sentence2_ling']})
])
return processed
args, args_list, lng_names = parse_args(ckpt='./ckpt/model.pt')
tokenizer = T5Tokenizer.from_pretrained(args.model_name)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
lng_names = [name_map[x] for x in lng_names]
examples = json.load(open('assets/examples.json'))
examples = process_examples(examples, lng_names)
stats = json.load(open('assets/stats.json'))
ling_collection = np.load('assets/ling_collection.npy')
scaler = joblib.load('assets/scaler.bin')
scale_ratio = np.load('assets/ratios.npy')
model, ling_disc, sem_emb = get_model(args, tokenizer, device)
state = torch.load(args.ckpt, map_location=torch.device('cpu'))
model.load_state_dict(state['model'], strict=True)
model.eval()
ling_disc.eval()
state = torch.load(args.sem_ckpt)
sem_emb.load_state_dict(state['model'], strict=True)
sem_emb.eval()
device = model.backbone.device
############# Start demo code
def round_ling(x):
is_int = stats['is_int']
mins = stats['min']
maxs = stats['max']
for i in range(len(x)):
# if is_int[i]:
# x[i] = round(x[i])
# else:
# x[i] = round(x[i], 3)
x[i] = round(x[i], 3)
return np.clip(x, mins, maxs)
def visibility(mode):
if mode == 0:
vis_group = group1
elif mode == 1:
vis_group = group2
elif mode == 2:
vis_group = group3
output = [gr.update(value=''), gr.update(value='')]
for component in components:
if component in vis_group:
output.append(gr.update(visible=True))
else:
output.append(gr.update(visible=False))
return output
def generate(sent1, ling):
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
ling1 = scaler.transform([ling['Source']])
ling2 = scaler.transform([ling['Target']])
inputs = {'sentence1_input_ids': input_ids,
'sentence1_ling': torch.tensor(ling1).float().to(device),
'sentence2_ling': torch.tensor(ling2).float().to(device),
'sentence1_attention_mask': torch.ones_like(input_ids)}
preds = []
with torch.no_grad():
pred = model.infer(inputs).cpu().numpy()
pred = tokenizer.batch_decode(pred,
skip_special_tokens=True)[0]
return pred
def generate_with_feedback(sent1, ling, approx):
if sent1 == '':
return ['Please input a source text.', '']
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
ling2 = torch.tensor(scaler.transform([ling['Target']])).float().to(device)
inputs = {
'sentence1_input_ids': input_ids,
'sentence2_ling': ling2,
'sentence1_attention_mask': torch.ones_like(input_ids)
}
pred, (pred_text, interpolations) = model.infer_with_feedback_BP(ling_disc, sem_emb, inputs, tokenizer)
interpolation = '-- ' + '\n-- '.join(interpolations)
return [pred_text, interpolation]
def generate_random(sent1, ling, count, approx):
preds, interpolations = [], []
for c in range(count):
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
ling['Target'] = ling_ex
pred, interpolation = generate_with_feedback(sent1, ling, approx)
preds.append(pred)
interpolations.append(interpolation)
return '\n***\n'.join(preds), '\n***\n'.join(interpolations), ling
def estimate_gen(sent1, sent2, ling, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent2))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
ling['Target'] = ling_pred
gen = generate_with_feedback(sent1, ling, approx)
results = gen + [ling]
return results
def estimate_tgt(sent2, ling, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent2))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
ling['Target'] = ling_pred
return ling
def estimate_src(sent1, ling, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent1))[used_indices]
else:
raise ValueError()
ling['Source'] = ling_pred
return ling
def rand_target(ling):
ling['Target'] = scaler.inverse_transform([np.random.randn(*ling['Target'].shape)])[0]
return ling
def rand_ex_target(ling):
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
ling['Target'] = ling_ex
return ling
def copy(ling):
ling['Target'] = ling['Source']
return ling
def add(ling):
scale_stepsize = np.random.uniform(1.0, 5.0)
x = ling['Target'] + scale_stepsize * scale_ratio
x = round_ling(x)
ling['Target'] = x
return ling
def sub(ling):
scale_stepsize = np.random.uniform(1.0, 5.0)
x = ling['Target'] - scale_stepsize * scale_ratio
x = round_ling(x)
ling['Target'] = x
return ling
title = """
<h1 style="text-align: center;">Controlled Paraphrase Generation with Linguistic Feature Control</h1>
<p style="font-size:1.2em;">This system utilizes an encoder-decoder model to generate text with controlled complexity, guided by 40 linguistic complexity indices.
The model can generate diverse paraphrases of a given sentence, each adjusted to maintain consistent meaning while varying
in linguistic complexity according to the desired level.</p>
<p style="font-size:1.2em;">It is important to note that not all index combinations are feasible (e.g., a sentence of "length" 5 with 10 "unique words").
To ensure high-quality outputs, our approach interpolates the embeddings of linguistic indices to identify the closest,
achievable set of indices for the given target.</p>
"""
guide = """
You may use the system in on of the following ways:
**Randomized Paraphrase Generation**: Select this option to produce multiple paraphrases with a range
of linguistic complexity. You need to provide a source text, specify the number of paraphrases you want,
and click "Generate." The linguistic complexity of the paraphrases will be determined randomly.
**Complexity-Matched Paraphrasing**: Select this option to generate a paraphrase of the given source
sentence that closely mirrors the linguistic complexity of another given sentence. Input your source
sentence along with another sentence (which will serve only to extract linguistic indices for the
paraphrase generation). Then, click "Generate."
**Manual Linguistic Control**: Select this option to manually control the linguistic complexity of the
generated text. We provided a set of tools for manual adjustments of the desired linguistic complexity of
the target sentence. These tools enable the user to extract linguistic indices from a given sentence,
generate a random (yet coherent) set of linguistic indices, and add or remove noise from the indices.
These tools are designed for experimental use and require the user to possess linguistic expertise for
effective input of linguistic indices. To use these tools, select "Tools to assist in setting linguistic
indices." Once indices are entered, click "Generate."
Second, you may select to use exact or approximate computation of linguistic indices (used in mode (2) and
in quality control of the genration). Approximate computation is significantly faster.
Third, you may view the intermediate sentences of the quality control process by selecting the checkbox.
Fourth, you may try out some examples by clicking on "Examples...". Examples consist of a source sentences,
the indices of the source sentences, and a sample set of target linguistic indices.
Please make your choice below.
"""
sent1 = gr.Textbox(label='Source text')
ling = gr.Dataframe(value = [[x, 0, 0] for x in lng_names],
headers=['Index', 'Source', 'Target'],
datatype=['str', 'number', 'number'], visible=False)
css = """
#guide span.svelte-1w6vloh {font-size: 22px !important; font-weight: 600 !important}
#mode span.svelte-1gfkn6j {font-size: 18px !important; font-weight: 600 !important}
#mode {border: 0px; box-shadow: none}
#mode .block {padding: 0px}
div.gradio-container {color: black}
div.form {background: inherit}
body {
--text-sm: 12px;
--text-md: 16px;
--text-lg: 18px;
--input-text-size: 16px;
--section-text-size: 16px;
--input-background: --neutral-50;
}
.separator {
width: 100%;
height: 3px; /* Adjust the height for boldness */
background-color: #000; /* Adjust the color as needed */
margin: 20px 0; /* Adjust the margin as needed */
}
"""
with gr.Blocks(
theme=gr.themes.Default(
spacing_size=gr.themes.sizes.spacing_md,
text_size=gr.themes.sizes.text_md,
),
css=css) as demo:
gr.Image('assets/logo.png', height=100, container=False, show_download_button=False)
gr.Markdown(title)
with gr.Accordion("πŸš€ Quick Start Guide", open=False, elem_id='guide'):
gr.Markdown(guide)
with gr.Group(elem_classes='separator'):
pass
with gr.Group(elem_id='mode'):
mode = gr.Radio(
value='Randomized Paraphrase Generation',
label='How would you like to use this system?',
type="index",
choices=['πŸ”„ Randomized Paraphrase Generation',
'βš–οΈ Complexity-Matched Paraphrasing',
'πŸŽ›οΈ Manual Linguistic Control'],
)
with gr.Accordion("βš™οΈ Advanced Options", open=False):
approx = gr.Radio(value='Use approximate computation of linguistic indices (faster)',
choices=['Use approximate computation of linguistic indices (faster)',
'Use exact computation of linguistic indices'], container=False, show_label=False)
control_interpolation = gr.Checkbox(label='View the intermediate sentences in the interpolation of linguistic indices')
with gr.Accordion("πŸ“‘ Examples...", open=False):
gr.Examples(examples, [sent1, ling], examples_per_page=4, label=None)
with gr.Row():
sent1.render()
with gr.Column():
sent2 = gr.Textbox(label='Generated text')
interpolation = gr.Textbox(label='Quality control interpolation', visible=False, lines=5)
with gr.Group(elem_classes='separator'):
pass
#####################
with gr.Row():
generate_random_btn = gr.Button("Generate",
variant='primary', scale=1, visible=True)
count = gr.Number(label='Number of generated sentences', value=3, precision=0, scale=1, visible=True)
# generate_fb_btn = gr.Button("Generate with auto-adjust (towards pred)")
# generate_fb_s_btn = gr.Button("Generate with auto-adjust (moving s)")
#####################
with gr.Row():
estimate_gen_btn = gr.Button("Generate",
variant='primary',
scale=1, visible=False)
sent_ling_gen = gr.Textbox(label='Text to estimate linguistic indices', scale=1, visible=False)
#####################
generate_btn = gr.Button("Generate", variant='primary', visible=False)
with gr.Accordion("Tools to assist in the setting of linguistic indices...", open=False, visible=False) as ling_tools:
with gr.Row():
estimate_tgt_btn = gr.Button("Estimate linguistic indices of this sentence", visible=False)
sent_ling_est = gr.Textbox(label='Text to estimate linguistic indices', scale=2, visible=False)
estimate_src_btn = gr.Button("Estimate linguistic indices of source sentence", visible=False)
# rand_btn = gr.Button("Random target")
rand_ex_btn = gr.Button("Random target", size='lg', visible=False)
copy_btn = gr.Button("Copy linguistic indices of source to target", size='sm', visible=False)
with gr.Row():
sub_btn = gr.Button('Subtract \u03B5 from target linguistic indices', visible=False)
add_btn = gr.Button('Add \u03B5 to target linguistic indices', visible=False)
ling.render()
#####################
estimate_src_btn.click(estimate_src, inputs=[sent1, ling, approx], outputs=[ling])
estimate_tgt_btn.click(estimate_tgt, inputs=[sent_ling_est, ling, approx], outputs=[ling])
# estimate_tgt_btn.click(estimate_tgt, inputs=[sent_ling, ling], outputs=[ling])
estimate_gen_btn.click(estimate_gen, inputs=[sent1, sent_ling_gen, ling, approx], outputs=[sent2, interpolation, ling])
# rand_btn.click(rand_target, inputs=[ling], outputs=[ling])
rand_ex_btn.click(rand_ex_target, inputs=[ling], outputs=[ling])
copy_btn.click(copy, inputs=[ling], outputs=[ling])
generate_btn.click(generate_with_feedback, inputs=[sent1, ling, approx], outputs=[sent2, interpolation])
generate_random_btn.click(generate_random, inputs=[sent1, ling, count, approx],
outputs=[sent2, interpolation, ling])
# generate_fb_btn.click(generate_with_feedback, inputs=[sent1, ling], outputs=sent2s)
# generate_fb_s_btn.click(generate_with_feedbacks, inputs=[sent1, ling], outputs=sent2s)
add_btn.click(add, inputs=[ling], outputs=[ling])
sub_btn.click(sub, inputs=[ling], outputs=[ling])
group1 = [generate_random_btn, count]
group2 = [estimate_gen_btn, sent_ling_gen]
group3 = [generate_btn, estimate_src_btn, estimate_tgt_btn, sent_ling_est, rand_ex_btn, copy_btn, add_btn, sub_btn, ling, ling_tools]
components = group1 + group2 + group3
mode.change(visibility, inputs=[mode], outputs=[sent2, interpolation] + components)
control_interpolation.change(lambda v: gr.update(visible=v), inputs=[control_interpolation],
outputs=[interpolation])
print('Finished loading')
demo.launch(share=True)