def run_gradio(model, tokenizer, scaler, ling_collection, examples=None, lng_names=None, M=None): import numpy as np import torch from datetime import datetime from compute_lng import compute_lng import gradio as gr m = np.load('assets/m.npy') m = -1/m m[m == -np.inf] = 0 m /= 100 device = model.backbone.device def visibility(mode): if mode == 0: vis_group = group1 elif mode == 1: vis_group = group2 elif mode == 2: vis_group = group3 output = [gr.update(value=''), gr.update(value='')] for component in components: if component in vis_group: output.append(gr.update(visible=True)) else: output.append(gr.update(visible=False)) return output def generate(sent1, ling): input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device) ling1 = scaler.transform([ling['Source']]) ling2 = scaler.transform([ling['Target']]) inputs = {'sentence1_input_ids': input_ids, 'sentence1_ling': torch.tensor(ling1).float().to(device), 'sentence2_ling': torch.tensor(ling2).float().to(device), 'sentence1_attention_mask': torch.ones_like(input_ids)} preds = [] with torch.no_grad(): pred = model.infer(inputs).cpu().numpy() pred = tokenizer.batch_decode(pred, skip_special_tokens=True)[0] return pred def generate_with_feedbacks(sent1, ling): preds = [] eta = 0.1 input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device) ling1 = torch.tensor(scaler.transform([ling['Source']])).float().to(device) ling2 = torch.tensor(scaler.transform([ling['Target']])).float().to(device) ling1_embed = model.ling_embed(ling1) ling2_embed = model.ling_embed(ling2) cur_ling = ling1_embed + eta * (ling2_embed - ling1_embed) inputs = {'sentence1_input_ids': input_ids, 'sent1_ling_embed': ling1_embed, 'sent2_ling_embed': ling2_embed, 'sentence1_attention_mask': torch.ones_like(input_ids)} converged = False c = 0 while not converged: with torch.no_grad(): pred = model.infer(inputs) inputs_pred = inputs.copy() inputs_pred.update({'input_ids': pred, 'attention_mask': torch.ones_like(pred)}) ling_pred = model.ling_disc(**inputs_pred) ling_pred_embed = model.ling_embed(ling_pred) if len(interpolations) == 0 or pred != interpolations[-1]: interpolations.append(pred) diff = torch.mean((ling2_embed - ling_pred_embed)**2) scale = torch.norm(cur_ling)/torch.norm(ling2) # print(f'Diff: {diff.item():.3f} / Scale: ({scale.item():.3f})>> {tokenizer.batch_decode(pred.cpu().numpy(), skip_special_tokens=True)[0]}') if diff < 1e-5 or c >= 50: converged = True else: # cur_ling = cur_ling + eta * (ling2_embed - ling_pred_embed) inputs.update({ 'sentence1_input_ids': pred, # 'sent2_ling_embed': ling2_embed, 'sentence1_attention_mask': torch.ones_like(pred) }) c += 1 pred = tokenizer.batch_decode(pred.cpu().numpy(), skip_special_tokens=True)[0] return pred def generate_with_feedback(sent1, ling, approx): if sent1 == '': return ['Please input a source text.', ''] preds = [] interpolations = [] input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device) ling1 = torch.tensor(scaler.transform([ling['Source']])).float().to(device) ling2 = torch.tensor(scaler.transform([ling['Target']])).float().to(device) ling1_embed = model.ling_embed(ling1) ling2_embed = model.ling_embed(ling2) inputs = {'sentence1_input_ids': input_ids, 'sent1_ling_embed': ling1_embed, 'sent2_ling_embed': ling2_embed, 'sentence1_attention_mask': torch.ones_like(input_ids)} converged = False c = 0 eta = 0.3 while not converged: with torch.no_grad(): pred = model.infer(inputs) inputs_pred = inputs.copy() inputs_pred.update({'input_ids': pred, 'attention_mask': torch.ones_like(pred)}) pred_text = tokenizer.batch_decode(pred.cpu().numpy(), skip_special_tokens=True)[0] if 'approximate' in approx: ling_pred = model.ling_disc(**inputs_pred) elif 'exact' in approx: ling_pred = compute_lng(pred_text) ling_pred = scaler.transform([ling_pred])[0] ling_pred = torch.tensor(ling_pred).to(pred.device).float() else: raise ValueError() ling_pred_embed = model.ling_embed(ling_pred) if len(interpolations) == 0 or pred_text != interpolations[-1]: interpolations.append(pred_text) diff = torch.mean((ling2_embed - ling_pred_embed)**2) # print(f'Diff {diff.item():.3f}>> {tokenizer.batch_decode(pred.cpu().numpy(), skip_special_tokens=True)[0]}') if diff < 10 or c >= 50: converged = True else: ling2_embed = ling2_embed + eta * (ling_pred_embed - ling2_embed) inputs.update({'sent2_ling_embed': ling2_embed}) c += 1 interpolation = '-- ' + '\n-- '.join(interpolations) return [pred_text, interpolation] def generate_random(sent1, ling, count, approx): preds, interpolations = [], [] for c in range(count): idx = np.random.randint(0, len(ling_collection)) ling_ex = ling_collection[idx] ling['Target'] = ling_ex pred, interpolation = generate_with_feedback(sent1, ling, approx) preds.append(pred) interpolations.append(interpolation) return '\n***\n'.join(preds), '\n***\n'.join(interpolations), ling def estimate_gen(sent1, sent2, ling, approx): if 'approximate' in approx: input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device) with torch.no_grad(): ling_pred = model.ling_disc(input_ids=input_ids).cpu().numpy() ling_pred = scaler.inverse_transform(ling_pred)[0] elif 'exact' in approx: ling_pred = compute_lng(sent2) else: raise ValueError() ling['Target'] = ling_pred gen = generate_with_feedback(sent1, ling, approx) results = gen + [ling] return results def estimate_tgt(sent2, ling, approx): if 'approximate' in approx: input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device) with torch.no_grad(): ling_pred = model.ling_disc(input_ids=input_ids).cpu().numpy() ling_pred = scaler.inverse_transform(ling_pred)[0] elif 'exact' in approx: ling_pred = compute_lng(sent2) else: raise ValueError() ling['Target'] = ling_pred return ling def estimate_src(sent1, ling, approx): if 'approximate' in approx: input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device) with torch.no_grad(): ling_pred = model.ling_disc(input_ids=input_ids).cpu().numpy() ling_pred = scaler.inverse_transform(ling_pred)[0] elif 'exact' in approx: ling_pred = compute_lng(sent1) else: raise ValueError() ling['Source'] = ling_pred return ling def rand_target(ling): ling['Target'] = scaler.inverse_transform([np.random.randn(*ling['Target'].shape)])[0] return ling def rand_ex_target(ling): idx = np.random.randint(0, len(examples)) ling_ex = examples[idx][1] ling['Target'] = ling_ex['Target'] return ling def copy(ling): ling['Target'] = ling['Source'] return ling def add_noise(ling): x = scaler.transform([ling['Target']]) x += np.random.randn(*ling['Target'].shape) x = scaler.inverse_transform(x)[0] ling['Target'] = x return ling def add(ling): x = scaler.transform([ling['Target']]) x += m x = scaler.inverse_transform(x)[0] ling['Target'] = x return ling def sub(ling): x = scaler.transform([ling['Target']]) x -= m x = scaler.inverse_transform(x)[0] ling['Target'] = x return ling # title = '' # for i, model in enumerate(models): # if i > 0: # title += '\n' # title += f"model ({i})\n\tUsing VAE = {model.args.ling_vae}\n\tUsing ICA = {model.args.use_ica}\n\tNumber of features = {model.args.lng_dim if not model.args.use_ica else model.args.n_ica}" title = """ # LingConv: A System for Controlled Linguistic Conversion ## Description This system is an encoder-decoder model for complexity controlled text generation, guided by 241 linguistic complexity indices as key attributes. Given a sentence and a desired level of linguistic complexity, the model can generate diverse paraphrases that maintain consistent meaning, adjusted for different linguistic complexity levels. However, it's important to note that not all index combinations are feasible (such as requesting a sentence of "length" 5 with 10 "unique words"). To ensure high quality outputs, our approach interpolates the embedding of linguistic indices to locate the most closely matched, achievable set of indices for the given target. """ guide = """ You may use the system in on of the following ways: **Randomized Paraphrase Generation**: Select this option to produce multiple paraphrases with a range of linguistic complexity. You need to provide a source text, specify the number of paraphrases you want, and click "Generate." The linguistic complexity of the paraphrases will be determined randomly. **Complexity-Matched Paraphrasing**: Select this option to generate a paraphrase of the given source sentence that closely mirrors the linguistic complexity of another given sentence. Input your source sentence along with another sentence (which will serve only to extract linguistic indices for the paraphrase generation). Then, click "Generate." **Manual Linguistic Control**: Select this option to manually control the linguistic complexity of the generated text. We provided a set of tools for manual adjustments of the desired linguistic complexity of the target sentence. These tools enable the user to extract linguistic indices from a given sentence, generate a random (yet coherent) set of linguistic indices, and add or remove noise from the indices. These tools are designed for experimental use and require the user to possess linguistic expertise for effective input of linguistic indices. To use these tools, select "Tools to assist in setting linguistic indices." Once indices are entered, click "Generate." Second, you may select to use exact or approximate computation of linguistic indices (used in mode (2) and in quality control of the genration). Approximate computation is significantly faster. Third, you may view the intermediate sentences of the quality control process by selecting the checkbox. Fourth, you may try out some examples by clicking on "Examples...". Examples consist of a source sentences, the indices of the source sentences, and a sample set of target linguistic indices. Please make your choice below. """ sent1 = gr.Textbox(label='Source text') ling = gr.Dataframe(value = [[x, 0, 0] for x in lng_names], headers=['Index', 'Source', 'Target'], datatype=['str', 'number', 'number'], visible=False) css = """ #guide span.svelte-s1r2yt {font-size: 22px !important; font-weight: 600 !important} """ with gr.Blocks(css=css) as demo: gr.Markdown(title) with gr.Accordion("Quick Start Guide", open=False, elem_id='guide'): gr.Markdown(guide) mode = gr.Radio(value='Randomized Paraphrase Generation', label='How would you like to use this system?', type="index", choices=['Randomized Paraphrase Generation', 'Complexity-Matched Paraphrasing', 'Manual Linguistic Control']) approx = gr.Radio(value='Use approximate computation of linguistic indices (faster)', choices=['Use approximate computation of linguistic indices (faster)', 'Use exact computation of linguistic indices'], container=False, show_label=False) control_interpolation = gr.Checkbox(label='View the intermediate sentences in the interpolation of linguistic indices') with gr.Accordion("Examples...", open=False): gr.Examples(examples, [sent1, ling], examples_per_page=4, label=None) with gr.Row(): sent1.render() with gr.Column(): sent2 = gr.Textbox(label='Generated text') interpolation = gr.Textbox(label='Quality control interpolation', visible=False, lines=5) ##################### with gr.Row(): generate_random_btn = gr.Button("Generate", variant='primary', scale=1, visible=True) count = gr.Number(label='Number of generated sentences', value=3, precision=0, scale=1, visible=True) # generate_fb_btn = gr.Button("Generate with auto-adjust (towards pred)") # generate_fb_s_btn = gr.Button("Generate with auto-adjust (moving s)") # add_noise_btn = gr.Button('Add noise to target linguistic indices') ##################### with gr.Row(): estimate_gen_btn = gr.Button("Generate", variant='primary', scale=1, visible=False) sent_ling_gen = gr.Textbox(label='Text to estimate linguistic indices', scale=1, visible=False) ##################### generate_btn = gr.Button("Generate", variant='primary', visible=False) with gr.Accordion("Tools to assist in the setting of linguistic indices...", open=False, visible=False) as ling_tools: with gr.Row(): estimate_tgt_btn = gr.Button("Estimate linguistic indices of this sentence", visible=False) sent_ling_est = gr.Textbox(label='Text to estimate linguistic indices', scale=2, visible=False) estimate_src_btn = gr.Button("Estimate linguistic indices of source sentence", visible=False) # rand_btn = gr.Button("Random target") rand_ex_btn = gr.Button("Random target", size='lg', visible=False) copy_btn = gr.Button("Copy linguistic indices of source to target", size='sm', visible=False) with gr.Row(): add_btn = gr.Button('Add \u03B5 to target linguistic indices', visible=False) sub_btn = gr.Button('Subtract \u03B5 from target linguistic indices', visible=False) ling.render() ##################### estimate_src_btn.click(estimate_src, inputs=[sent1, ling, approx], outputs=[ling]) estimate_tgt_btn.click(estimate_tgt, inputs=[sent_ling_est, ling, approx], outputs=[ling]) # estimate_tgt_btn.click(estimate_tgt, inputs=[sent_ling, ling], outputs=[ling]) estimate_gen_btn.click(estimate_gen, inputs=[sent1, sent_ling_gen, ling, approx], outputs=[sent2, interpolation, ling]) # rand_btn.click(rand_target, inputs=[ling], outputs=[ling]) rand_ex_btn.click(rand_ex_target, inputs=[ling], outputs=[ling]) copy_btn.click(copy, inputs=[ling], outputs=[ling]) generate_btn.click(generate_with_feedback, inputs=[sent1, ling, approx], outputs=[sent2, interpolation]) generate_random_btn.click(generate_random, inputs=[sent1, ling, count, approx], outputs=[sent2, interpolation, ling]) # generate_fb_btn.click(generate_with_feedback, inputs=[sent1, ling], outputs=sent2s) # generate_fb_s_btn.click(generate_with_feedbacks, inputs=[sent1, ling], outputs=sent2s) add_btn.click(add, inputs=[ling], outputs=[ling]) sub_btn.click(sub, inputs=[ling], outputs=[ling]) # add_noise_btn.click(add_noise, inputs=[ling], outputs=[ling]) group1 = [generate_random_btn, count] group2 = [estimate_gen_btn, sent_ling_gen] group3 = [generate_btn, estimate_src_btn, estimate_tgt_btn, sent_ling_est, rand_ex_btn, copy_btn, add_btn, sub_btn, ling, ling_tools] components = group1 + group2 + group3 mode.change(visibility, inputs=[mode], outputs=[sent2, interpolation] + components) control_interpolation.change(lambda v: gr.update(visible=v), inputs=[control_interpolation], outputs=[interpolation]) demo.launch(share=True)