Spaces:
Runtime error
Runtime error
mojtaba-nafez
commited on
Commit
•
2fa2727
1
Parent(s):
85615cd
add initial files to deploy
Browse files- app.py +32 -0
- config.py +124 -0
- data/Dataset-Merged.json +0 -0
- data/test_dataset.json +0 -0
- data/train_dataset.json +0 -0
- data/val_dataset.json +0 -0
- datasets.py +214 -0
- inference.py +147 -0
- main.py +50 -0
- main_clip.py +59 -0
- metrics.py +65 -0
- models.py +410 -0
- modules.py +199 -0
- projections/LaBSE_best_text_projection.pt +3 -0
- projections/ParsBERT_best_poem_projection.pt +3 -0
- requirements.txt +12 -0
- train.py +202 -0
- utils.py +207 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models import PoemTextModel
|
2 |
+
from inference import predict_poems_from_text
|
3 |
+
from utils import get_poem_embeddings
|
4 |
+
import config as CFG
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
def greet_user(name):
|
9 |
+
return "Hello " + name + " Welcome to Gradio!😎"
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
13 |
+
model.eval()
|
14 |
+
# Inference: Output some example predictions and write them in a file
|
15 |
+
with open(CFG.dataset_path, encoding="utf-8") as f:
|
16 |
+
dataset = json.load(f)
|
17 |
+
|
18 |
+
def gradio_make_predictions(text):
|
19 |
+
beyts = predict_poems_from_text(model, poem_embeddings, text, [data['beyt'] for data in dataset], n=10)
|
20 |
+
return "\n".join(beyts)
|
21 |
+
|
22 |
+
CFG.batch_size = 512
|
23 |
+
model, poem_embeddings = get_poem_embeddings(dataset, model)
|
24 |
+
# print(poem_embeddings[0])
|
25 |
+
# with open('poem_embeddings.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
26 |
+
# f.write(json.dumps(poem_embeddings, indent= 4))
|
27 |
+
|
28 |
+
text_input = gr.Textbox(label = "Enter the text to find poem beyts for")
|
29 |
+
output = gr.Textbox()
|
30 |
+
|
31 |
+
app = gr.Interface(fn = gradio_make_predictions, inputs=text_input, outputs=output)
|
32 |
+
app.launch()
|
config.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
3 |
+
from transformers import BertTokenizer, BertModel, BertConfig, BertTokenizerFast
|
4 |
+
from transformers import XLMRobertaModel, XLMRobertaConfig
|
5 |
+
import os
|
6 |
+
|
7 |
+
"""
|
8 |
+
Configurations
|
9 |
+
"""
|
10 |
+
file_dirname = os.path.dirname(__file__) #in case it is needed for relative paths
|
11 |
+
dataset_path = os.path.join(file_dirname, "../data/Dataset-Merged.json") # dataset path for PoemTextModel training, validation and test
|
12 |
+
image_path = "" # path to append to the image filenames of datasets used for CLIPModel training
|
13 |
+
random_seed = 3 # the seed used to shuffle dataset with
|
14 |
+
|
15 |
+
# what percentage of dataset will be used for each set?
|
16 |
+
train_propotion = 0.85
|
17 |
+
val_propotion = 0.05
|
18 |
+
# The remaining will be used as the test set
|
19 |
+
|
20 |
+
batch_size = 128
|
21 |
+
num_workers = 0 # parameter of torch Dataloader
|
22 |
+
lr = 1e-3 # learning rate
|
23 |
+
weight_decay = 1e-3
|
24 |
+
patience = 2 # patience parameter for lr scheduler
|
25 |
+
factor = 0.5 # factor parameter for lr scheduler
|
26 |
+
epochs = 60
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
# Pretrained hugging face models chosen by poem_encoder_model
|
30 |
+
poem_encoder_dict = {
|
31 |
+
"Bert":{
|
32 |
+
"poem_encoder_pretrained_name": 'mitra-mir/BERT-Persian-Poetry',
|
33 |
+
},
|
34 |
+
"ALBERT":{
|
35 |
+
"poem_encoder_pretrained_name": 'mitra-mir/ALBERT-Persian-Poetry',
|
36 |
+
},
|
37 |
+
"ParsBERT":{
|
38 |
+
"poem_encoder_pretrained_name": 'HooshvareLab/bert-base-parsbert-uncased',
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
poem_encoder_model = "ParsBERT" ### Important! The base model for poem encoder (one of "Bert", "ALBERT" and "ParsBERT")
|
43 |
+
# keep this an empty string if you want to use the pretrained weights from
|
44 |
+
# huggingface (poem_encoder_dict[poem_encoder_model])/a fresh model.
|
45 |
+
# else give the path to encoder
|
46 |
+
poem_encoder_load_path = ""
|
47 |
+
# path to save encoder to
|
48 |
+
poem_encoder_save_path = "{}-poem-encoder".format(poem_encoder_model)
|
49 |
+
|
50 |
+
if poem_encoder_load_path:
|
51 |
+
poem_encoder_pretrained_name = poem_encoder_load_path
|
52 |
+
poem_tokenizer = poem_encoder_load_path
|
53 |
+
else:
|
54 |
+
poem_encoder_pretrained_name = poem_encoder_dict[poem_encoder_model]['poem_encoder_pretrained_name']
|
55 |
+
poem_tokenizer = poem_encoder_dict[poem_encoder_model]['poem_encoder_pretrained_name']
|
56 |
+
|
57 |
+
poem_embedding = 768 # embedding dim of poem encoder's output (for one token)
|
58 |
+
poems_max_length = 64 # max_length parameter when padding/truncating poems using poem tokenizer
|
59 |
+
# keep this an empty string if you want to use a freshly initialized projection module. else give the path to projection model
|
60 |
+
poem_projection_load_path = os.path.join(file_dirname, "projections/{}_best_poem_projection.pt".format(poem_encoder_model))
|
61 |
+
# path to save projection to
|
62 |
+
poem_projection_save_path = "{}_best_poem_projection.pt".format(poem_encoder_model)
|
63 |
+
poem_encoder_trainable = False # if set to false, this encoder's frozen and its weights won't be saved at all.
|
64 |
+
|
65 |
+
# Pretrained hugging face models chosen by text_encoder_model
|
66 |
+
text_encoder_dict = {
|
67 |
+
"M-Bert":{
|
68 |
+
"text_encoder_pretrained_name": 'bert-base-multilingual-cased',
|
69 |
+
},
|
70 |
+
"XLM-RoBERTa":{
|
71 |
+
"text_encoder_pretrained_name": 'xlm-roberta-base',
|
72 |
+
},
|
73 |
+
"LaBSE":{
|
74 |
+
"text_encoder_pretrained_name": 'setu4993/LaBSE',
|
75 |
+
}
|
76 |
+
}
|
77 |
+
text_encoder_model = 'LaBSE' ### Important! The base model for text encoder (one of "M-Bert", "XLM-RoBERTa" and "LaBSE")
|
78 |
+
# keep this an empty string if you want to use the pretrained weights from huggingface/a fresh model. else give the path to encoder
|
79 |
+
text_encoder_load_path = ""
|
80 |
+
# path to save encoder to
|
81 |
+
text_encoder_save_path = "{}-text-encoder".format(text_encoder_model)
|
82 |
+
|
83 |
+
if text_encoder_load_path:
|
84 |
+
text_encoder_pretrained_name = text_encoder_load_path
|
85 |
+
text_tokenizer = text_encoder_load_path
|
86 |
+
else:
|
87 |
+
text_encoder_pretrained_name = text_encoder_dict[text_encoder_model]["text_encoder_pretrained_name"]
|
88 |
+
text_tokenizer = text_encoder_dict[text_encoder_model]["text_encoder_pretrained_name"]
|
89 |
+
|
90 |
+
text_embedding = 768 # embedding dim of text encoder's output (for one token)
|
91 |
+
text_max_length = 200 # max_length parameter when padding/truncating text using text tokenizer
|
92 |
+
# keep this an empty string if you want to use a freshly initialized projection module. else give the path to projection model
|
93 |
+
text_projection_load_path = os.path.join(file_dirname, "projections/{}_best_text_projection.pt".format(text_encoder_model))
|
94 |
+
# path to save peojection to
|
95 |
+
text_projection_save_path = "{}_best_text_projection.pt".format(text_encoder_model)
|
96 |
+
text_encoder_trainable = False # if set to false, this encoder's frozen and its weights won't be saved at all.
|
97 |
+
|
98 |
+
|
99 |
+
image_encoder_model = 'resnet50' # image model name to load via timm library
|
100 |
+
# keep this an empty string if you want to use the pretrained weights from huggingface/a fresh model. else give the path to encoder
|
101 |
+
image_encoder_weights_load_path = ""
|
102 |
+
# path to save encoder weights to
|
103 |
+
image_encoder_weights_save_path = "{}_best_image_encoder.pt".format(image_encoder_model)
|
104 |
+
image_embedding = 2048 # embedding dim of image encoder's output (for one token)
|
105 |
+
# keep this an empty string if you want to use a freshly initialized projection module. else give the path to projection model
|
106 |
+
image_projection_load_path = ""
|
107 |
+
# path to save projection to
|
108 |
+
image_projection_save_path = "{}_best_image_projection.pt".format(image_encoder_model)
|
109 |
+
image_encoder_trainable = False # if set to false, this encoder's frozen and its weights won't be saved at all.
|
110 |
+
|
111 |
+
# classes of Tokenizer, Model and Config to use for each text/poem encoder model
|
112 |
+
tokenizers = {"ALBERT": AutoTokenizer, "M-Bert": BertTokenizer, "XLM-RoBERTa": AutoTokenizer, "ParsBERT":AutoTokenizer, "Bert":AutoTokenizer, "LaBSE": BertTokenizerFast}
|
113 |
+
encoders = {"ALBERT": AutoModel, "M-Bert": BertModel, "XLM-RoBERTa":XLMRobertaModel, "ParsBERT": AutoModel, "Bert":AutoModel, "LaBSE": BertModel}
|
114 |
+
configs = {"ALBERT": AutoConfig, "M-Bert": BertConfig, "XLM-RoBERTa": XLMRobertaConfig, "ParsBERT": AutoConfig, "Bert":AutoConfig, "LaBSE": BertConfig}
|
115 |
+
|
116 |
+
|
117 |
+
temperature = 1.0 # temperature parameter for scaling dot similarities
|
118 |
+
|
119 |
+
# image size
|
120 |
+
size = 224
|
121 |
+
|
122 |
+
# for projection head; used for poem, text and image encoders
|
123 |
+
projection_dim = 1024 # projection embedding dim (output of models dim)
|
124 |
+
dropout = 0.1 # fraction of the output of fc layer in projection head to be zeroed.
|
data/Dataset-Merged.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/test_dataset.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/train_dataset.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/val_dataset.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import albumentations as A
|
5 |
+
import config as CFG
|
6 |
+
|
7 |
+
|
8 |
+
class PoemTextDataset(torch.utils.data.Dataset):
|
9 |
+
"""
|
10 |
+
torch Dataset for PoemTextModel.
|
11 |
+
...
|
12 |
+
Attributes:
|
13 |
+
-----------
|
14 |
+
dataset_dict : list of dict
|
15 |
+
dataset containing poem-text pair with ids
|
16 |
+
encoded_poems : dict
|
17 |
+
output of tokenizer for beyts found in dataset_dict. max_length spedified in configs.
|
18 |
+
padding and truncation set to True to be truncated or padded to max length.
|
19 |
+
encoded_texts : dict
|
20 |
+
output of tokenizer for texts found in dataset_dict. max_length spedified in configs.
|
21 |
+
padding and truncation set to True to be truncated or padded to max length.
|
22 |
+
|
23 |
+
Methods:
|
24 |
+
--------
|
25 |
+
__get_item__(idx)
|
26 |
+
returns item with index idx.
|
27 |
+
__len__()
|
28 |
+
represents length of dataset
|
29 |
+
"""
|
30 |
+
def __init__(self, dataset_dict):
|
31 |
+
"""
|
32 |
+
Init class, save dataset_dict and calculate output of tokenizers for each text and poem using their corresponding tokenizers.
|
33 |
+
The tokenizers are chosen based on configs.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
-----------
|
37 |
+
dataset_dict: list of dict
|
38 |
+
a list containing dictionaries which have "beyt", "text" and "id" keys.
|
39 |
+
"""
|
40 |
+
self.dataset_dict = dataset_dict
|
41 |
+
poem_tokenizer = CFG.tokenizers[CFG.poem_encoder_model].from_pretrained(CFG.poem_tokenizer)
|
42 |
+
text_tokenizer = CFG.tokenizers[CFG.text_encoder_model].from_pretrained(CFG.text_tokenizer)
|
43 |
+
self.encoded_poems = poem_tokenizer(
|
44 |
+
[item['beyt'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.poems_max_length
|
45 |
+
)
|
46 |
+
self.encoded_texts = text_tokenizer(
|
47 |
+
[item['text'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.text_max_length
|
48 |
+
)
|
49 |
+
|
50 |
+
def __getitem__(self, idx):
|
51 |
+
"""
|
52 |
+
returns a dict having data with index idx. the dict is used as an input to the PoemTextModel.
|
53 |
+
|
54 |
+
Parameters:
|
55 |
+
-----------
|
56 |
+
idx: int
|
57 |
+
index of the data to get
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
--------
|
61 |
+
item: dict
|
62 |
+
a dict having tokenizers' output for poem and text, and id of the data with index idx
|
63 |
+
"""
|
64 |
+
item = {}
|
65 |
+
item["beyt"] = {
|
66 |
+
key: torch.tensor(values[idx])
|
67 |
+
for key, values in self.encoded_poems.items()
|
68 |
+
}
|
69 |
+
|
70 |
+
item["text"] = {
|
71 |
+
key: torch.tensor(values[idx])
|
72 |
+
for key, values in self.encoded_texts.items()
|
73 |
+
}
|
74 |
+
item['id'] = self.dataset_dict[idx]['id']
|
75 |
+
|
76 |
+
return item
|
77 |
+
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
"""
|
81 |
+
returns the length of the dataset
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
--------
|
85 |
+
length: int
|
86 |
+
length using the length of dataset_dict we saved in class
|
87 |
+
"""
|
88 |
+
return len(self.dataset_dict)
|
89 |
+
|
90 |
+
|
91 |
+
class CLIPDataset(torch.utils.data.Dataset):
|
92 |
+
"""
|
93 |
+
torch Dataset for CLIPModel.
|
94 |
+
...
|
95 |
+
Attributes:
|
96 |
+
-----------
|
97 |
+
dataset_dict : list of dict
|
98 |
+
dataset containing poem-image or text-image pair with ids
|
99 |
+
encoded : dict
|
100 |
+
output of tokenizer for beyts/texts found in dataset_dict. max_length spedified in configs.
|
101 |
+
padding and truncation set to True to be truncated or padded to max length.
|
102 |
+
transforms: albumentations.BasicTransform
|
103 |
+
transforms to apply to the images
|
104 |
+
|
105 |
+
Methods:
|
106 |
+
--------
|
107 |
+
__get_item__(idx)
|
108 |
+
returns item with index idx.
|
109 |
+
__len__()
|
110 |
+
represents length of dataset
|
111 |
+
"""
|
112 |
+
def __init__(self, dataset_dict, transforms, is_image_poem_pair=True):
|
113 |
+
"""
|
114 |
+
Init class, save dataset_dict and transforms and calculate output of tokenizers for each text and poem using their corresponding tokenizers.
|
115 |
+
The tokenizers are chosen based on configs.
|
116 |
+
|
117 |
+
Parameters:
|
118 |
+
-----------
|
119 |
+
dataset_dict: list of dict
|
120 |
+
a list containing dictionaries which have "beyt", "text" and "id" keys.
|
121 |
+
transforms: albumentations.BasicTransform
|
122 |
+
transforms to apply to the images
|
123 |
+
is_image_poem_pair: Bool, optional
|
124 |
+
if set to False, dataset has text-image pairs and must use the corresponding text tokenizer.
|
125 |
+
else has poem-images pairs and uses the poem tokenizer.
|
126 |
+
"""
|
127 |
+
self.dataset_dict = dataset_dict
|
128 |
+
# using the poem tokenizer to encode poems or text tokenizer to encode text (based on configs).
|
129 |
+
if is_image_poem_pair:
|
130 |
+
poem_tokenizer = CFG.tokenizers[CFG.poem_encoder_model].from_pretrained(CFG.poem_tokenizer)
|
131 |
+
self.encoded = poem_tokenizer(
|
132 |
+
[item['beyt'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.poems_max_length
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
text_tokenizer = CFG.tokenizers[CFG.text_encoder_model].from_pretrained(CFG.text_tokenizer)
|
136 |
+
self.encoded = text_tokenizer(
|
137 |
+
[item['text'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.text_max_length
|
138 |
+
)
|
139 |
+
self.transforms = transforms
|
140 |
+
|
141 |
+
def __getitem__(self, idx):
|
142 |
+
"""
|
143 |
+
returns a dict having data with index idx. the dict is used as an input to the CLIPModel.
|
144 |
+
|
145 |
+
Parameters:
|
146 |
+
-----------
|
147 |
+
idx: int
|
148 |
+
index of the data to get
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
--------
|
152 |
+
item: dict
|
153 |
+
a dict having tokenizers' output for poem and text, and id of the data with index idx
|
154 |
+
"""
|
155 |
+
item = {}
|
156 |
+
# getting text from encoded texts
|
157 |
+
item["text"] = {
|
158 |
+
key: torch.tensor(values[idx])
|
159 |
+
for key, values in self.encoded.items()
|
160 |
+
}
|
161 |
+
|
162 |
+
# opening the image
|
163 |
+
image = cv2.imread(f"{CFG.image_path}{self.dataset_dict[idx]['image']}")
|
164 |
+
# converting BGR to RGB for transforms
|
165 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
166 |
+
# apply transforms
|
167 |
+
image = self.transforms(image=image)['image']
|
168 |
+
# permute dims of image
|
169 |
+
item['image'] = torch.tensor(image).permute(2, 0, 1).float()
|
170 |
+
|
171 |
+
return item
|
172 |
+
|
173 |
+
|
174 |
+
def __len__(self):
|
175 |
+
"""
|
176 |
+
returns the length of the dataset
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
--------
|
180 |
+
length: int
|
181 |
+
length using the length of dataset_dict we saved in class
|
182 |
+
"""
|
183 |
+
return len(self.dataset_dict)
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
def get_transforms(mode="train"):
|
188 |
+
"""
|
189 |
+
returns transforms to use on image based on mode
|
190 |
+
|
191 |
+
Parameters:
|
192 |
+
-----------
|
193 |
+
mode: str, optional
|
194 |
+
to distinguish between train and val/test transforms (here they are the same!)
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
--------
|
198 |
+
item: dict
|
199 |
+
a dict having tokenizers' output for poem and text, and id of the data with index idx
|
200 |
+
"""
|
201 |
+
if mode == "train":
|
202 |
+
return A.Compose(
|
203 |
+
[
|
204 |
+
A.Resize(CFG.size, CFG.size, always_apply=True), # resizing image to CFG.size
|
205 |
+
A.Normalize(max_pixel_value=255.0, always_apply=True), # normalizing image values
|
206 |
+
]
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
return A.Compose(
|
210 |
+
[
|
211 |
+
A.Resize(CFG.size, CFG.size, always_apply=True), # resizing image to CFG.size
|
212 |
+
A.Normalize(max_pixel_value=255.0, always_apply=True), # normalizing image values
|
213 |
+
]
|
214 |
+
)
|
inference.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
import config as CFG
|
7 |
+
from datasets import get_transforms
|
8 |
+
|
9 |
+
#for running this script as main
|
10 |
+
from utils import get_datasets, build_loaders
|
11 |
+
from models import PoemTextModel
|
12 |
+
from utils import get_poem_embeddings
|
13 |
+
import json
|
14 |
+
import os
|
15 |
+
|
16 |
+
|
17 |
+
def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer=None, n=10):
|
18 |
+
"""
|
19 |
+
Returns n poems which are the most similar to a text query
|
20 |
+
|
21 |
+
Parameters:
|
22 |
+
-----------
|
23 |
+
model: PoemTextModel
|
24 |
+
model to compute text query's embeddings
|
25 |
+
poem_embeddings: sequence with shape (#poems, CFG.projection_dim)
|
26 |
+
poem embeddings to check similarity
|
27 |
+
query: str
|
28 |
+
text query
|
29 |
+
poems: list of str
|
30 |
+
poems corresponding to poem_embeddings
|
31 |
+
text_tokenizer: huggingface Tokenizer, optional
|
32 |
+
tokenizer to tokenize query with. if none, will instantiate a new text tokenizer using configs.
|
33 |
+
n: int, optional
|
34 |
+
number of poems to return
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
--------
|
38 |
+
A list of n poem strings whose embeddings are the most similar to query text's embedding.
|
39 |
+
|
40 |
+
"""
|
41 |
+
#Tokenizing and Encoding the query text
|
42 |
+
if not text_tokenizer:
|
43 |
+
text_tokenizer = CFG.tokenizers[CFG.text_encoder_model].from_pretrained(CFG.text_tokenizer)
|
44 |
+
|
45 |
+
encoded_query = text_tokenizer([query])
|
46 |
+
batch = {
|
47 |
+
key: torch.tensor(values).to(CFG.device)
|
48 |
+
for key, values in encoded_query.items()
|
49 |
+
}
|
50 |
+
|
51 |
+
# getting query text's embeddings
|
52 |
+
model.eval()
|
53 |
+
with torch.no_grad():
|
54 |
+
text_features = model.text_encoder(
|
55 |
+
input_ids= batch["input_ids"], attention_mask=batch["attention_mask"]
|
56 |
+
)
|
57 |
+
text_embeddings = model.text_projection(text_features)
|
58 |
+
|
59 |
+
# normalizing and computing dot similarity of poem and text embeddings
|
60 |
+
poem_embeddings_n = F.normalize(poem_embeddings, p=2, dim=-1)
|
61 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
62 |
+
|
63 |
+
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
|
64 |
+
|
65 |
+
# returning top n poems based on embedding similarity
|
66 |
+
_, indices = torch.topk(dot_similarity.squeeze(0), n)
|
67 |
+
return [poems[idx] for idx in indices]
|
68 |
+
|
69 |
+
|
70 |
+
def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10):
|
71 |
+
"""
|
72 |
+
Returns n poems which are the most similar to an image query
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
-----------
|
76 |
+
model: CLIPModel
|
77 |
+
model to compute image query's embeddings
|
78 |
+
poem_embeddings: sequence with shape (#poems, CFG.projection_dim)
|
79 |
+
poem embeddings to check similarity
|
80 |
+
image_filename: str
|
81 |
+
path and file name for the image query
|
82 |
+
poems: list of str
|
83 |
+
poems corresponding to poem_embeddings
|
84 |
+
n: int, optional
|
85 |
+
number of poems to return
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
--------
|
89 |
+
A list of n poem strings whose embeddings are the most similar to image query's embedding.
|
90 |
+
|
91 |
+
"""
|
92 |
+
# Reading, Processing and applying transforms to image (all explained in datasets.py)
|
93 |
+
image = cv2.imread(f"{image_filename}")
|
94 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
95 |
+
image = get_transforms(mode="test")(image=image)['image']
|
96 |
+
image = torch.tensor(image).permute(2, 0, 1).float()
|
97 |
+
|
98 |
+
# getting image query's embeddings
|
99 |
+
model.eval()
|
100 |
+
with torch.no_grad():
|
101 |
+
image_features = model.image_encoder(torch.unsqueeze(image, 0).to(CFG.device))
|
102 |
+
image_embeddings = model.image_projection(image_features)
|
103 |
+
|
104 |
+
# normalizing and computing dot similarity of poem and text embeddings
|
105 |
+
poem_embeddings_n = F.normalize(poem_embeddings, p=2, dim=-1)
|
106 |
+
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
|
107 |
+
dot_similarity = image_embeddings_n @ poem_embeddings_n.T
|
108 |
+
|
109 |
+
# returning top n poems based on embedding similarity
|
110 |
+
_, indices = torch.topk(dot_similarity.squeeze(0), n)
|
111 |
+
return [poems[idx] for idx in indices]
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
"""
|
115 |
+
Creates a PoemTextModel based on configs, and outputs some examples of its prediction.
|
116 |
+
"""
|
117 |
+
# get dataset from dataset_path (the same datasets as the train, val and test dataset files in the data directory is made)
|
118 |
+
train_dataset, val_dataset, test_dataset = get_datasets()
|
119 |
+
|
120 |
+
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
121 |
+
model.eval()
|
122 |
+
# Inference: Output some example predictions and write them in a file
|
123 |
+
print("_"*20)
|
124 |
+
print("Output Examples from test set")
|
125 |
+
model, poem_embeddings = get_poem_embeddings(test_dataset, model)
|
126 |
+
example = {}
|
127 |
+
for i, test_data in enumerate(test_dataset[:100]):
|
128 |
+
example[i] = {'Text': test_data["text"], 'True Beyt': test_data["beyt"], "Predicted Beyt":predict_poems_from_text(model, poem_embeddings, test_data["text"], [data['beyt'] for data in test_dataset], n=10)}
|
129 |
+
for i in range(10):
|
130 |
+
print("Text: ", example[i]['Text'])
|
131 |
+
print("True Beyt: ", example[i]['True Beyt'])
|
132 |
+
print("predicted Beyts: \n\t", "\n\t".join(example[i]["Predicted Beyt"]))
|
133 |
+
with open('example_output__{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
134 |
+
f.write(json.dumps(example, ensure_ascii=False, indent= 4))
|
135 |
+
|
136 |
+
print("Preparing model for user input...")
|
137 |
+
with open(CFG.dataset_path, encoding="utf-8") as f:
|
138 |
+
dataset = json.load(f)
|
139 |
+
|
140 |
+
model, poem_embeddings = get_poem_embeddings(dataset, model)
|
141 |
+
|
142 |
+
while(True):
|
143 |
+
user_text = input("Enter a Text to find poem beyts for: ")
|
144 |
+
beyts = predict_poems_from_text(model, poem_embeddings, user_text, [data['beyt'] for data in dataset], n=10)
|
145 |
+
print("predicted Beyts: \n\t", "\n\t".join(beyts))
|
146 |
+
with open('{}_output__{}_{}.json'.format(user_text, CFG.poem_encoder_model, CFG.text_encoder_model),'a+', encoding="utf-8") as f:
|
147 |
+
f.write(json.dumps(beyts, ensure_ascii=False, indent= 4))
|
main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils import get_datasets, build_loaders
|
2 |
+
from models import PoemTextModel
|
3 |
+
from train import train, test
|
4 |
+
from metrics import calc_metrics
|
5 |
+
from inference import predict_poems_from_text
|
6 |
+
from utils import get_poem_embeddings
|
7 |
+
import config as CFG
|
8 |
+
import json
|
9 |
+
|
10 |
+
def main():
|
11 |
+
"""
|
12 |
+
Creates a PoemTextModel based on configs and trains, tests and outputs some examples of its prediction.
|
13 |
+
"""
|
14 |
+
# get dataset from dataset_path (the same datasets as the train, val and test dataset files in the data directory is made)
|
15 |
+
train_dataset, val_dataset, test_dataset = get_datasets()
|
16 |
+
|
17 |
+
train_loader = build_loaders(train_dataset, mode="train")
|
18 |
+
valid_loader = build_loaders(val_dataset, mode="valid")
|
19 |
+
|
20 |
+
# train a PoemTextModel and write its loss history in a file
|
21 |
+
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
22 |
+
model, loss_history = train(model, train_loader, valid_loader)
|
23 |
+
with open('loss_history_{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
24 |
+
f.write(json.dumps(loss_history, indent= 4))
|
25 |
+
|
26 |
+
# compute accuracy, mean rank and MRR using test set and write them in a file
|
27 |
+
model.eval()
|
28 |
+
print("Accuracy on test set: ", test(model, test_dataset))
|
29 |
+
metrics = calc_metrics(test_dataset, model)
|
30 |
+
print('mean rank: ', metrics["mean_rank"])
|
31 |
+
print('mean reciprocal rank (MRR)', metrics["mean_reciprocal_rank_(MRR)"])
|
32 |
+
with open('test_metrics_{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
33 |
+
f.write(json.dumps(metrics, indent= 4))
|
34 |
+
|
35 |
+
# Inference: Output some example predictions and write them in a file
|
36 |
+
print("_"*20)
|
37 |
+
print("Output Examples from test set")
|
38 |
+
model, poem_embeddings = get_poem_embeddings(test_dataset, model)
|
39 |
+
example = {}
|
40 |
+
for i, test_data in enumerate(test_dataset[:100]):
|
41 |
+
example[i] = {'Text': test_data["text"], 'True Beyt': test_data["beyt"], "Predicted Beyt":predict_poems_from_text(model, poem_embeddings, test_data["text"], [data['beyt'] for data in test_dataset], n=10)}
|
42 |
+
for i in range(10):
|
43 |
+
print("Text: ", example[i]['Text'])
|
44 |
+
print("True Beyt: ", example[i]['True Beyt'])
|
45 |
+
print("predicted Beyts: \n\t", "\n\t".join(example[i]["Predicted Beyt"]))
|
46 |
+
with open('example_output__{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
47 |
+
f.write(json.dumps(example, ensure_ascii=False, indent= 4))
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
main()
|
main_clip.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils import get_datasets, build_loaders
|
2 |
+
from models import PoemTextModel
|
3 |
+
from train import train, test
|
4 |
+
from metrics import calc_metrics
|
5 |
+
from inference import predict_poems_from_text
|
6 |
+
from utils import get_poem_embeddings
|
7 |
+
import config as CFG
|
8 |
+
import json
|
9 |
+
|
10 |
+
def main():
|
11 |
+
"""
|
12 |
+
Creates a PoemTextModel based on configs and trains, tests and outputs some examples of its prediction.
|
13 |
+
"""
|
14 |
+
train_or_not = input("Train a new CLIP model using text embeddings? (needs the sajjadayobi360/cc3mfav2 and adityajn105/flickr8k datasets to be downloaded)\n[Y/N]")
|
15 |
+
if train_or_not == 'Y':
|
16 |
+
# Please download sajjadayobi360/cc3mfav2 and adityajn105/flickr8k datasets from kaggle
|
17 |
+
# !kaggle datasets download -d sajjadayobi360/cc3mfav2
|
18 |
+
# !kaggle datasets download -d adityajn105/flickr8k
|
19 |
+
#.... TODO
|
20 |
+
clip_dataset_dict = []
|
21 |
+
# get dataset from dataset_path (the same datasets as the train, val and test dataset files in the data directory is made)
|
22 |
+
train_dataset, val_dataset, test_dataset = get_clip_datasets(clip_dataset_dict)
|
23 |
+
|
24 |
+
train_loader = build_image_loaders(train_dataset, mode="train")
|
25 |
+
valid_loader = build_image_loaders(val_dataset, mode="valid")
|
26 |
+
|
27 |
+
# train a PoemTextModel and write its loss history in a file
|
28 |
+
model = CLIPModel(image_encoder_pretrained=True,
|
29 |
+
text_encoder_pretrained=True,
|
30 |
+
text_projection_trainable=False,
|
31 |
+
is_image_poem_pair=False
|
32 |
+
).to(CFG.device)
|
33 |
+
model, loss_history = train(model, train_loader, valid_loader)
|
34 |
+
with open('loss_history_{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
35 |
+
f.write(json.dumps(loss_history, indent= 4))
|
36 |
+
|
37 |
+
# Inference: Get a filename and output predictions then write them in a file
|
38 |
+
print("_"*20)
|
39 |
+
print("INFERENCE PHASE")
|
40 |
+
model = CLIPModel(image_encoder_pretrained=True,
|
41 |
+
text_encoder_pretrained=True,
|
42 |
+
text_projection_trainable=False,
|
43 |
+
is_image_poem_pair=True
|
44 |
+
).to(CFG.device)
|
45 |
+
model.eval()
|
46 |
+
with open(CFG.dataset_path, encoding="utf-8") as f:
|
47 |
+
dataset = json.load(f)
|
48 |
+
|
49 |
+
model, poem_embeddings = get_poem_embeddings(test_dataset, model)
|
50 |
+
|
51 |
+
while(True):
|
52 |
+
image_filename = input("Enter an image filename to predict poems for")
|
53 |
+
beyts = predict_poems_from_image(model, poem_embeddings, image_filename, [data['beyt'] for data in dataset], n=10)
|
54 |
+
print("predicted Beyts: \n\t", "\n\t".join(beyts))
|
55 |
+
with open('{}_output__{}_{}.json'.format(image_filename, CFG.poem_encoder_model, CFG.text_encoder_model),'a+', encoding="utf-8") as f:
|
56 |
+
f.write(json.dumps(beyts, ensure_ascii=False, indent= 4))
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|
metrics.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import numpy as np
|
3 |
+
import inference
|
4 |
+
from utils import get_poem_embeddings
|
5 |
+
import config as CFG
|
6 |
+
|
7 |
+
#for running this script as main
|
8 |
+
from utils import get_datasets, build_loaders
|
9 |
+
from models import PoemTextModel
|
10 |
+
from train import train, test
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
|
14 |
+
def calc_metrics(test_dataset, model):
|
15 |
+
"""
|
16 |
+
compute ranks of the test_dataset (and mean rank and MRR)
|
17 |
+
|
18 |
+
Parameters:
|
19 |
+
-----------
|
20 |
+
test_dataset: list of dict
|
21 |
+
dataset containing text and poem beyts to compute metrics from
|
22 |
+
model: PoemTextModel
|
23 |
+
The PoemTextModel model to get poem embeddings from and predict poems for each text
|
24 |
+
"""
|
25 |
+
# computing all poems embeddings once (to avoid computing them for each test text)
|
26 |
+
m , embedding = get_poem_embeddings(test_dataset, model)
|
27 |
+
# adding poems and texts
|
28 |
+
poems = []
|
29 |
+
meanings = []
|
30 |
+
for p in np.array(test_dataset):
|
31 |
+
poems.append(p['beyt'])
|
32 |
+
meanings.append(p['text'])
|
33 |
+
# instantiating a text tokenizer to encode texts
|
34 |
+
text_tokenizer = CFG.tokenizers[CFG.text_encoder_model].from_pretrained(CFG.text_tokenizer)
|
35 |
+
rank = []
|
36 |
+
for i, meaning in enumerate(meanings):
|
37 |
+
# predict most similar poem beyts for each text
|
38 |
+
sorted_pred = inference.predict_poems_from_text(model, embedding, meaning, poems, text_tokenizer, n=len(test_dataset))
|
39 |
+
# find index of this text's true beyt in the sorted predictions
|
40 |
+
idx = sorted_pred.index(poems[i])
|
41 |
+
rank.append(idx+1)
|
42 |
+
rank = np.array(rank)
|
43 |
+
metrics = {
|
44 |
+
"mean_rank": np.mean(rank),
|
45 |
+
"mean_reciprocal_rank_(MRR)":np.mean(np.reciprocal(rank.astype(float))),
|
46 |
+
"rank": rank.tolist()
|
47 |
+
}
|
48 |
+
return metrics
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
"""
|
52 |
+
Creates a PoemTextModel based on configs, and computes its metrics.
|
53 |
+
"""
|
54 |
+
# get dataset from dataset_path (the same datasets as the train, val and test dataset files in the data directory is made)
|
55 |
+
train_dataset, val_dataset, test_dataset = get_datasets()
|
56 |
+
|
57 |
+
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
58 |
+
model.eval()
|
59 |
+
# compute accuracy, mean rank and MRR using test set and write them in a file
|
60 |
+
print("Accuracy on test set: ", test(model, test_dataset))
|
61 |
+
metrics = calc_metrics(test_dataset, model)
|
62 |
+
print('mean rank: ', metrics["mean_rank"])
|
63 |
+
print('mean reciprocal rank (MRR)', metrics["mean_reciprocal_rank_(MRR)"])
|
64 |
+
with open('test_metrics_{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
65 |
+
f.write(json.dumps(metrics, indent= 4))
|
models.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
#FIX
|
6 |
+
import config as CFG
|
7 |
+
from modules import TextEncoder, ProjectionHead, ImageEncoder
|
8 |
+
|
9 |
+
|
10 |
+
class PoemTextModel(nn.Module):
|
11 |
+
"""
|
12 |
+
Model predicting poem and text embeddings, and their similarities.
|
13 |
+
...
|
14 |
+
Attributes:
|
15 |
+
-----------
|
16 |
+
poem_encoder : TextEncoder
|
17 |
+
encoder used for extracting poem embeddings
|
18 |
+
text_encoder : TextEncoder
|
19 |
+
encoder used for extracting text embeddings
|
20 |
+
poem_projection: ProjectionHead
|
21 |
+
projection head used for poem embeddings (projects poem encoder output to shared embedding space)
|
22 |
+
text_projection: ProjectionHead
|
23 |
+
projection head used for text embeddings (projects text encoder output to shared embedding space)
|
24 |
+
temperature: float
|
25 |
+
used to scale the dot similarities
|
26 |
+
|
27 |
+
Methods:
|
28 |
+
--------
|
29 |
+
forward(batch):
|
30 |
+
returns poem and text embeddings of batch
|
31 |
+
similarity_scores(batch):
|
32 |
+
computes dot similarities of a batch of text-poem pair
|
33 |
+
predict(batch):
|
34 |
+
predicts the most similar poem idx for each text (using previous methods)
|
35 |
+
calculate_loss(batch):
|
36 |
+
computes contrastive (cross entropy) loss for both poems and texts.
|
37 |
+
save_current():
|
38 |
+
saves current model's encoders (if trainable) and projection heads.
|
39 |
+
"""
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
poem_encoder_pretrained,
|
43 |
+
text_encoder_pretrained,
|
44 |
+
temperature=CFG.temperature,
|
45 |
+
poem_embedding=CFG.poem_embedding,
|
46 |
+
text_embedding=CFG.text_embedding,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Initializes model's submodules
|
50 |
+
Parameters:
|
51 |
+
-----------
|
52 |
+
poem_encoder_pretrained: bool
|
53 |
+
whether or not to load a pretrained poem encoder.
|
54 |
+
text_encoder_pretrained: bool
|
55 |
+
whether or not to load a pretrained text encoder.
|
56 |
+
temperature: float, optional
|
57 |
+
used to scale the dot similarities
|
58 |
+
poem_embedding: int, optional
|
59 |
+
dim of poem encoder's encoding output before projection
|
60 |
+
text_embedding: int, optional
|
61 |
+
dim of text encoder's encoding output before projection
|
62 |
+
"""
|
63 |
+
super().__init__()
|
64 |
+
self.poem_encoder = TextEncoder(CFG.poem_encoder_model, CFG.poem_encoder_pretrained_name, pretrained=poem_encoder_pretrained, trainable= CFG.poem_encoder_trainable)
|
65 |
+
self.text_encoder = TextEncoder(CFG.text_encoder_model, CFG.text_encoder_pretrained_name, pretrained=text_encoder_pretrained, trainable= CFG.text_encoder_trainable)
|
66 |
+
|
67 |
+
self.poem_projection = ProjectionHead(embedding_dim=poem_embedding)
|
68 |
+
if CFG.poem_projection_load_path: # if provided, load projection weights from this path
|
69 |
+
self.poem_projection.load_state_dict(torch.load(CFG.poem_projection_load_path, map_location=CFG.device))
|
70 |
+
|
71 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
72 |
+
if CFG.text_projection_load_path: # if provided, load projection weights from this path
|
73 |
+
self.text_projection.load_state_dict(torch.load(CFG.text_projection_load_path, map_location=CFG.device))
|
74 |
+
|
75 |
+
self.temperature = temperature
|
76 |
+
|
77 |
+
def forward(self, batch):
|
78 |
+
"""
|
79 |
+
returns poem and text embeddings of batch
|
80 |
+
|
81 |
+
Parameters:
|
82 |
+
-----------
|
83 |
+
batch: list of dict
|
84 |
+
input (containing poem-text pairs (encoded using the encoder's tokenizer) with keys 'beyt' and 'text')
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
--------
|
88 |
+
poem and text embeddings of batch (each of shape (batch_size, projection_dim))
|
89 |
+
"""
|
90 |
+
beyts, texts = batch["beyt"], batch["text"]
|
91 |
+
# Getting Beyt and Text Features
|
92 |
+
poem_features = self.poem_encoder(
|
93 |
+
input_ids=beyts["input_ids"], attention_mask=beyts["attention_mask"]
|
94 |
+
)
|
95 |
+
text_features = self.text_encoder(
|
96 |
+
input_ids=texts["input_ids"], attention_mask=texts["attention_mask"]
|
97 |
+
)
|
98 |
+
# Getting Beyt and Text Embeddings (with same dimension)
|
99 |
+
poem_embeddings = self.poem_projection(poem_features)
|
100 |
+
text_embeddings = self.text_projection(text_features)
|
101 |
+
|
102 |
+
return poem_embeddings, text_embeddings
|
103 |
+
|
104 |
+
def similarity_scores(self, batch):
|
105 |
+
"""
|
106 |
+
computes dot similarities of a batch of text-poem pair
|
107 |
+
|
108 |
+
Parameters:
|
109 |
+
-----------
|
110 |
+
batch: list of dict
|
111 |
+
input (containing poem-text pairs (encoded using the encoder's tokenizer) with keys 'beyt' and 'text')
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
--------
|
115 |
+
dot similarity of poem and text embeddings of batch (of shape (batch_size, batch_size))
|
116 |
+
"""
|
117 |
+
# Getting Beyt and Text Embeddings (with same dimension)
|
118 |
+
poem_embeddings, text_embeddings = self.forward(batch)
|
119 |
+
# Normalizing embeddings
|
120 |
+
poem_embeddings_n = F.normalize(poem_embeddings, p=2, dim=-1)
|
121 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
122 |
+
# Computing dot / cosine similarity of the normalized embeddings
|
123 |
+
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
|
124 |
+
return dot_similarity # (batch_size, batch_size) first dim is texts, second dim is poems for each text
|
125 |
+
|
126 |
+
def predict(self, batch):
|
127 |
+
"""
|
128 |
+
predicts the most similar poem (idx) for each text (using previous methods)
|
129 |
+
|
130 |
+
Parameters:
|
131 |
+
-----------
|
132 |
+
batch: list of dict
|
133 |
+
input (containing poem-text pairs (encoded using the encoder's tokenizer) with keys 'beyt' and 'text')
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
--------
|
137 |
+
index of poem predicted for each text (of shape (batch_size))
|
138 |
+
"""
|
139 |
+
dot_similarity = self.similarity_scores(batch)
|
140 |
+
# Getting argmax in first dimension of the dot-similarities to predict index of the most similar poem for each text
|
141 |
+
return torch.argmax(dot_similarity, dim=1)
|
142 |
+
|
143 |
+
def calculate_loss(self, poem_embeddings, text_embeddings):
|
144 |
+
"""
|
145 |
+
computes contrastive (cross entropy) loss for both poems and texts.
|
146 |
+
|
147 |
+
Parameters:
|
148 |
+
-----------
|
149 |
+
poem_embeddings: of shape (batch_size, projection_dim)
|
150 |
+
output embeddings of poem projection head
|
151 |
+
text_embeddings: of shape (batch_size, projection_dim)
|
152 |
+
output embeddings of text projection head
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
--------
|
156 |
+
average of the loss computed from inputs
|
157 |
+
"""
|
158 |
+
# dot similarity of the embeddings scaled by temperature (logits)
|
159 |
+
logits = (text_embeddings @ poem_embeddings.T) / self.temperature
|
160 |
+
# computing targets for the cross entropy loss to compare with logits.
|
161 |
+
# each embedding's similarity is computed with itself and then added,
|
162 |
+
# scaled by the temperature parameter, and normalized into a probability distribution via a softmax
|
163 |
+
poems_similarity = poem_embeddings @ poem_embeddings.T
|
164 |
+
texts_similarity = text_embeddings @ text_embeddings.T
|
165 |
+
targets = F.softmax(
|
166 |
+
(poems_similarity + texts_similarity) / 2 * self.temperature, dim=-1
|
167 |
+
)
|
168 |
+
# taking cross entropy loss in both dimensions: once for texts and once for poems
|
169 |
+
texts_loss = cross_entropy(logits, targets, reduction='none')
|
170 |
+
poems_loss = cross_entropy(logits.T, targets.T, reduction='none')
|
171 |
+
loss = (poems_loss + texts_loss) / 2.0 # average of losses. shape: (batch_size)
|
172 |
+
return loss.mean()
|
173 |
+
|
174 |
+
def save_current(self):
|
175 |
+
"""
|
176 |
+
saves current model's encoders (if trainable) and projection heads.
|
177 |
+
"""
|
178 |
+
if CFG.text_encoder_trainable:
|
179 |
+
self.text_encoder.model.save_pretrained(CFG.text_encoder_save_path)
|
180 |
+
if CFG.poem_encoder_trainable:
|
181 |
+
self.poem_encoder.model.save_pretrained(CFG.poem_encoder_save_path)
|
182 |
+
torch.save(self.text_projection.state_dict(), CFG.text_projection_save_path)
|
183 |
+
torch.save(self.poem_projection.state_dict(), CFG.poem_projection_save_path)
|
184 |
+
|
185 |
+
class CLIPModel(nn.Module):
|
186 |
+
"""
|
187 |
+
Model predicting poem/text and image embeddings, and their similarities.
|
188 |
+
...
|
189 |
+
Attributes:
|
190 |
+
-----------
|
191 |
+
encoder : TextEncoder
|
192 |
+
encoder used for extracting poem/text embeddings
|
193 |
+
image_encoder : ImageEncoder
|
194 |
+
encoder used for extracting image embeddings
|
195 |
+
text_projection: ProjectionHead
|
196 |
+
projection head used for poem/text embeddings (projects text encoder output to shared embedding space)
|
197 |
+
image_projection: ProjectionHead
|
198 |
+
projection head used for image embeddings (projects image encoder output to shared embedding space)
|
199 |
+
temperature: float
|
200 |
+
used to scale the dot similarities
|
201 |
+
|
202 |
+
Methods:
|
203 |
+
--------
|
204 |
+
forward(batch):
|
205 |
+
returns poem/text and image embeddings of batch
|
206 |
+
similarity_scores(batch):
|
207 |
+
computes dot similarities of a batch of text-image pair
|
208 |
+
predict(batch):
|
209 |
+
predicts the most similar poem/text idx for each image (using previous methods)
|
210 |
+
calculate_loss(batch):
|
211 |
+
computes contrastive (cross entropy) loss for both poems/texts and images.
|
212 |
+
save_current():
|
213 |
+
saves current model's encoders (if trainable) and projection heads.
|
214 |
+
"""
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
image_encoder_pretrained,
|
218 |
+
text_encoder_pretrained,
|
219 |
+
text_projection_trainable,
|
220 |
+
temperature=CFG.temperature,
|
221 |
+
image_embedding=CFG.image_embedding,
|
222 |
+
text_embedding=CFG.text_embedding,
|
223 |
+
is_image_poem_pair=True
|
224 |
+
):
|
225 |
+
"""
|
226 |
+
Initializes model's submodules
|
227 |
+
Parameters:
|
228 |
+
-----------
|
229 |
+
image_encoder_pretrained: bool
|
230 |
+
whether or not to load a pretrained image encoder.
|
231 |
+
text_encoder_pretrained: bool
|
232 |
+
whether or not to load a pretrained text encoder.
|
233 |
+
text_projection_trainable: bool
|
234 |
+
whether or not to train text projection
|
235 |
+
(since the text projection is frozen in our trainings unlike other projections of models)
|
236 |
+
temperature: float, optional
|
237 |
+
used to scale the dot similarities
|
238 |
+
image_embedding: int, optional
|
239 |
+
dim of image encoder's encoding output before projection
|
240 |
+
text_embedding: int, optional
|
241 |
+
dim of text encoder's encoding output before projection
|
242 |
+
is_image_poem_pair: bool, optional
|
243 |
+
if True, the text inputs to this model is poems and needs one of the poem encoders to predict embeddings with.
|
244 |
+
else it's a text that needs the encoders dedicated to text.
|
245 |
+
"""
|
246 |
+
super().__init__()
|
247 |
+
# Loading the encoders and their projections using configs
|
248 |
+
self.image_encoder = ImageEncoder(pretrained=image_encoder_pretrained, trainable=CFG.image_encoder_trainable)
|
249 |
+
|
250 |
+
if is_image_poem_pair:
|
251 |
+
self.encoder = TextEncoder(CFG.poem_encoder_model, CFG.poem_encoder_pretrained_name, pretrained=text_encoder_pretrained, trainable=CFG.poem_encoder_trainable)
|
252 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
253 |
+
if CFG.poem_projection_load_path:
|
254 |
+
self.text_projection.load_state_dict(torch.load(CFG.poem_projection_load_path, map_location=CFG.device))
|
255 |
+
else:
|
256 |
+
self.encoder = TextEncoder(CFG.text_encoder_model, CFG.text_encoder_pretrained_name, pretrained=text_encoder_pretrained, trainable=CFG.text_encoder_trainable)
|
257 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
258 |
+
if CFG.text_projection_load_path:
|
259 |
+
self.text_projection.load_state_dict(torch.load(CFG.text_projection_load_path, map_location=CFG.device))
|
260 |
+
|
261 |
+
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
|
262 |
+
if CFG.image_projection_load_path:
|
263 |
+
self.image_projection.load_state_dict(torch.load(CFG.image_projection_load_path, map_location=CFG.device))
|
264 |
+
|
265 |
+
if not text_projection_trainable:
|
266 |
+
for p in self.text_projection.parameters():
|
267 |
+
p.requires_grad = False
|
268 |
+
|
269 |
+
self.text_projection_trainable = text_projection_trainable
|
270 |
+
self.is_image_poem_pair = is_image_poem_pair
|
271 |
+
self.temperature = temperature
|
272 |
+
|
273 |
+
def forward(self, batch):
|
274 |
+
"""
|
275 |
+
returns image and text/poem embeddings of batch
|
276 |
+
|
277 |
+
Parameters:
|
278 |
+
-----------
|
279 |
+
batch: list of dict
|
280 |
+
input (containing image-text/poem pairs (text/poem encoded using the encoder's tokenizer)
|
281 |
+
with keys 'image' and 'text')
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
--------
|
285 |
+
poem/text and image embeddings of batch (each of shape (batch_size, projection_dim))
|
286 |
+
"""
|
287 |
+
image, texts = batch["image"], batch["text"]
|
288 |
+
# Getting Image and Text Features
|
289 |
+
image_features = self.image_encoder(batch["image"])
|
290 |
+
text_features = self.encoder(
|
291 |
+
input_ids=texts["input_ids"], attention_mask=texts["attention_mask"]
|
292 |
+
)
|
293 |
+
# Getting Image and Text Embeddings (with same dimension)
|
294 |
+
image_embeddings = self.image_projection(image_features)
|
295 |
+
text_embeddings = self.text_projection(text_features)
|
296 |
+
|
297 |
+
return image_embeddings, text_embeddings
|
298 |
+
|
299 |
+
def similarity_scores(self, batch):
|
300 |
+
"""
|
301 |
+
computes dot similarities of a batch of text/poem-image pair
|
302 |
+
|
303 |
+
Parameters:
|
304 |
+
-----------
|
305 |
+
batch: list of dict
|
306 |
+
input (containing image-text/poem pairs (text/poem encoded using the encoder's tokenizer)
|
307 |
+
with keys 'image' and 'text')
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
--------
|
311 |
+
dot similarity of poem/text and image embeddings of batch (of shape (batch_size, batch_size))
|
312 |
+
"""
|
313 |
+
# Getting Image and Text Embeddings (with same dimension)
|
314 |
+
image_embeddings, text_embeddings = self.forward(batch)
|
315 |
+
# Normalizing embeddings
|
316 |
+
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
|
317 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
318 |
+
# Computing dot / cosine similarity of the normalized embeddings
|
319 |
+
dot_similarity = image_embeddings_n @ text_embeddings_n.T
|
320 |
+
return dot_similarity # (batch_size, batch_size) first dim is images, second dim is poems/texts for each image
|
321 |
+
|
322 |
+
def predict(self, batch):
|
323 |
+
"""
|
324 |
+
predicts the most similar poem/text (idx) for each image (using previous methods)
|
325 |
+
|
326 |
+
Parameters:
|
327 |
+
-----------
|
328 |
+
batch: list of dict
|
329 |
+
input (containing image-text/poem pairs (text/poem encoded using the encoder's tokenizer)
|
330 |
+
with keys 'image' and 'text')
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
--------
|
334 |
+
index of poem/text predicted for each image (of shape (batch_size))
|
335 |
+
"""
|
336 |
+
dot_similarity = self.similarity_scores(batch)
|
337 |
+
# Getting argmax in first dimension of the dot-similarities
|
338 |
+
# to predict index of the most similar poem/text for each image
|
339 |
+
return torch.argmax(dot_similarity, dim=1)
|
340 |
+
|
341 |
+
def calculate_loss(self, image_embeddings, text_embeddings):
|
342 |
+
"""
|
343 |
+
computes contrastive (cross entropy) loss for both poems/texts and images.
|
344 |
+
|
345 |
+
Parameters:
|
346 |
+
-----------
|
347 |
+
image_embeddings: of shape (batch_size, projection_dim)
|
348 |
+
output embeddings of image projection head
|
349 |
+
text_embeddings: of shape (batch_size, projection_dim)
|
350 |
+
output embeddings of text projection head
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
--------
|
354 |
+
average of the loss computed from inputs
|
355 |
+
"""
|
356 |
+
# dot similarity of the embeddings scaled by temperature (logits)
|
357 |
+
logits = (text_embeddings @ image_embeddings.T) / self.temperature
|
358 |
+
# computing targets for the cross entropy loss to compare with logits.
|
359 |
+
# each embedding's similarity is computed with itself and then averaged,
|
360 |
+
# scaled by the temperature parameter, and normalized into a probability distribution via a softmax
|
361 |
+
images_similarity = image_embeddings @ image_embeddings.T
|
362 |
+
texts_similarity = text_embeddings @ text_embeddings.T
|
363 |
+
targets = F.softmax(
|
364 |
+
(images_similarity + texts_similarity) / 2 * self.temperature, dim=-1
|
365 |
+
)
|
366 |
+
# taking cross entropy loss in both dimensions: once for texts and once for images
|
367 |
+
texts_loss = cross_entropy(logits, targets, reduction='none')
|
368 |
+
images_loss = cross_entropy(logits.T, targets.T, reduction='none')
|
369 |
+
loss = (images_loss + texts_loss) / 2.0 # average of losses. shape: (batch_size)
|
370 |
+
return loss.mean()
|
371 |
+
|
372 |
+
def save_current(self):
|
373 |
+
"""
|
374 |
+
saves current model's encoders and projection heads (if trainable).
|
375 |
+
"""
|
376 |
+
if self.is_image_poem_pair:
|
377 |
+
if CFG.poem_encoder_trainable:
|
378 |
+
self.encoder.model.save_pretrained(CFG.poem_encoder_save_path)
|
379 |
+
else:
|
380 |
+
if CFG.text_encoder_trainable:
|
381 |
+
self.encoder.model.save_pretrained(CFG.text_encoder_save_path)
|
382 |
+
if CFG.image_encoder_trainable:
|
383 |
+
torch.save(self.image_encoder.model.state_dict(), CFG.image_encoder_weights_save_path)
|
384 |
+
if self.text_projection_trainable:
|
385 |
+
torch.save(self.text_projection.state_dict(), CFG.text_projection_save_path)
|
386 |
+
torch.save(self.image_projection.state_dict(), CFG.image_projection_save_path)
|
387 |
+
|
388 |
+
def cross_entropy(preds, targets, reduction='none'):
|
389 |
+
"""
|
390 |
+
Computes cross_entropy of logits and targets using their last dimension
|
391 |
+
|
392 |
+
Parameters:
|
393 |
+
-----------
|
394 |
+
preds: tensor/numpy array
|
395 |
+
logits
|
396 |
+
targets: tensor/ numpy array
|
397 |
+
reduction: str, optional
|
398 |
+
if set to "mean", return loss mean across all dimensions.
|
399 |
+
if set to "none", return loss computed using last dim.
|
400 |
+
|
401 |
+
Returns:
|
402 |
+
--------
|
403 |
+
loss or loss average
|
404 |
+
"""
|
405 |
+
log_softmax = nn.LogSoftmax(dim=-1)
|
406 |
+
loss = (-targets * log_softmax(preds)).sum(1) # cross entropy loss
|
407 |
+
if reduction == "none":
|
408 |
+
return loss
|
409 |
+
elif reduction == "mean":
|
410 |
+
return loss.mean()
|
modules.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import timm
|
4 |
+
import config as CFG
|
5 |
+
|
6 |
+
|
7 |
+
class TextEncoder(nn.Module):
|
8 |
+
"""
|
9 |
+
Text/Poem encoder used in PoemTextModel and CLIPModel
|
10 |
+
...
|
11 |
+
Attributes:
|
12 |
+
-----------
|
13 |
+
model : a torch.nn.Module model
|
14 |
+
The image encoder model
|
15 |
+
|
16 |
+
Methods:
|
17 |
+
--------
|
18 |
+
forward(x)
|
19 |
+
returns model embeddings of x (batch of texts/poems) (of the CLS token)
|
20 |
+
__init__()
|
21 |
+
creates the encoder model using huggingface transformers,
|
22 |
+
also freezes the model if it's not trainable.
|
23 |
+
"""
|
24 |
+
def __init__(self, encoder_model, encoder_pretrained_name, pretrained, trainable):
|
25 |
+
"""
|
26 |
+
creates the poem or text encoder model using transformers and loads weights from pretrained model if needed.
|
27 |
+
Also freezes the model if it's not trainable.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
-----------
|
31 |
+
pretrained: bool
|
32 |
+
if pretrained=True, get pretrained model's weights. else create a fresh untrained model.
|
33 |
+
trainable: bool
|
34 |
+
if trainable=False, the model's weights will be frozen.
|
35 |
+
encoder_model: str
|
36 |
+
image encoder model name used as input to get the right model from configs.
|
37 |
+
encoder_pretrained_name: str
|
38 |
+
image encoder model to get weights from. (not used when pretrained=False)
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
if pretrained:
|
43 |
+
self.model = CFG.encoders[encoder_model].from_pretrained(encoder_pretrained_name)
|
44 |
+
else:
|
45 |
+
self.model = CFG.encoders[encoder_model](config=CFG.configs[encoder_model]())
|
46 |
+
|
47 |
+
for p in self.model.parameters():
|
48 |
+
p.requires_grad = trainable
|
49 |
+
|
50 |
+
# Using the CLS token hidden representation as the sentence's embedding
|
51 |
+
self.target_token_idx = 0
|
52 |
+
|
53 |
+
def forward(self, input_ids, attention_mask):
|
54 |
+
"""
|
55 |
+
forwards and calculates embeddings of the input using attention mask.
|
56 |
+
|
57 |
+
Parameters:
|
58 |
+
-----------
|
59 |
+
input_ids: input ids (output of tokenizer)
|
60 |
+
attention masks: input masks (for example for padding, pad tokens will be masked)
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
--------
|
64 |
+
the embedding of the CLS (or target) token of the encoder's last hidden state
|
65 |
+
"""
|
66 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
67 |
+
last_hidden_state = output.last_hidden_state
|
68 |
+
return last_hidden_state[:, self.target_token_idx, :]
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
class ProjectionHead(nn.Module):
|
73 |
+
"""
|
74 |
+
Projection head used to project embeddings from each encoder to a shared embedding space
|
75 |
+
...
|
76 |
+
Attributes:
|
77 |
+
-----------
|
78 |
+
projection : torch.nn.Linear
|
79 |
+
The main Dense projection (from encoder's embedding dim to shared embedding projection dim)
|
80 |
+
gelu: torch.nn.GELU
|
81 |
+
activation function
|
82 |
+
fc: torch.nn.Linear
|
83 |
+
a dense layer after projection (projection_dim to projection_dim)
|
84 |
+
dropout: torch.nn.Dropout
|
85 |
+
dropout after fc
|
86 |
+
layer_norm: torch.nn.LayerNorm
|
87 |
+
layer norm after dropout
|
88 |
+
|
89 |
+
Methods:
|
90 |
+
--------
|
91 |
+
forward(x)
|
92 |
+
returns projection embeddings from x (encoder output embeddings)
|
93 |
+
__init__()
|
94 |
+
creates the projection head
|
95 |
+
"""
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
embedding_dim,
|
99 |
+
projection_dim=CFG.projection_dim,
|
100 |
+
dropout=CFG.dropout
|
101 |
+
):
|
102 |
+
"""
|
103 |
+
Creates the projection head used after an encoder.
|
104 |
+
|
105 |
+
Parameters:
|
106 |
+
-----------
|
107 |
+
embedding_dim: int
|
108 |
+
dimension of the output embeddings of the encoder.
|
109 |
+
projection_dim: int, optional
|
110 |
+
dimension to project embeddings to.
|
111 |
+
dropout: float
|
112 |
+
fraction of the output of fc layer to be zeroed.
|
113 |
+
"""
|
114 |
+
super().__init__()
|
115 |
+
self.projection = nn.Linear(embedding_dim, projection_dim)
|
116 |
+
self.gelu = nn.GELU()
|
117 |
+
self.fc = nn.Linear(projection_dim, projection_dim)
|
118 |
+
self.dropout = nn.Dropout(dropout)
|
119 |
+
self.layer_norm = nn.LayerNorm(projection_dim)
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
"""
|
123 |
+
Forwards and calculates projected embeddings from encoder embeddings.
|
124 |
+
|
125 |
+
Parameters:
|
126 |
+
-----------
|
127 |
+
x: input (of shape (batch_size, embedding_dim))
|
128 |
+
the output embedding of this projection head's encoder
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
--------
|
132 |
+
the embeddings in a shared embedding space (of shape (batch_size, projection_dim))
|
133 |
+
"""
|
134 |
+
projected = self.projection(x) #main projection layer
|
135 |
+
x = self.gelu(projected)
|
136 |
+
x = self.fc(x)
|
137 |
+
x = self.dropout(x)
|
138 |
+
# the projected outputs are added to x as a residual connection
|
139 |
+
x = x + projected
|
140 |
+
x = self.layer_norm(x)
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
class ImageEncoder(nn.Module):
|
145 |
+
"""
|
146 |
+
Image encoder used in CLIPModel
|
147 |
+
...
|
148 |
+
Attributes:
|
149 |
+
-----------
|
150 |
+
model : a torch.nn.Module model from timm (pytorch-image-models)
|
151 |
+
The image encoder model
|
152 |
+
|
153 |
+
Methods:
|
154 |
+
--------
|
155 |
+
forward(x)
|
156 |
+
returns model embeddings of x (batch of images)
|
157 |
+
__init__()
|
158 |
+
creates the encoder model using timm and loads fine-tuned model's state dict if needed.
|
159 |
+
also freezes the model if it's not trainable.
|
160 |
+
"""
|
161 |
+
def __init__(
|
162 |
+
self, pretrained, trainable, model_name=CFG.image_encoder_model
|
163 |
+
):
|
164 |
+
"""
|
165 |
+
creates the encoder model using timm and loads fine-tuned model's state dict if needed.
|
166 |
+
Also freezes the model if it's not trainable.
|
167 |
+
|
168 |
+
Parameters:
|
169 |
+
-----------
|
170 |
+
pretrained: bool
|
171 |
+
if pretrained=True, get SOTA weights (or weights saved in image_encoder_weights_load_path).
|
172 |
+
else create a fresh untrained model.
|
173 |
+
trainable: bool
|
174 |
+
if trainable=False, the model's weights will be frozen.
|
175 |
+
model_name: str
|
176 |
+
image encoder model name used as input to timm.create_model.
|
177 |
+
"""
|
178 |
+
super().__init__()
|
179 |
+
self.model = timm.create_model(
|
180 |
+
model_name, pretrained, num_classes=0, global_pool="avg"
|
181 |
+
)
|
182 |
+
if pretrained and CFG.image_encoder_weights_load_path:
|
183 |
+
self.model.load_state_dict(torch.load(CFG.image_encoder_weights_load_path, map_location=CFG.device))
|
184 |
+
for p in self.model.parameters():
|
185 |
+
p.requires_grad = trainable
|
186 |
+
|
187 |
+
def forward(self, x):
|
188 |
+
"""
|
189 |
+
forwards and calculates embeddings of the input.
|
190 |
+
|
191 |
+
Parameters:
|
192 |
+
-----------
|
193 |
+
x: input (batch of transformed images)
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
--------
|
197 |
+
embeddings of the model for the input (of shape (batch_size, image_embedding))
|
198 |
+
"""
|
199 |
+
return self.model(x)
|
projections/LaBSE_best_text_projection.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42369217ef5104e0ccf452ad310b2d2dcfc81d20d6444532d70c44bb064e76d8
|
3 |
+
size 7358959
|
projections/ParsBERT_best_poem_projection.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:953022eab4908ab16e512446c11e7edf32a2ec8e7379de0d6748d52e7dda9773
|
3 |
+
size 7358983
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
Pillow
|
4 |
+
scikit_learn
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
tqdm
|
8 |
+
transformers
|
9 |
+
timm
|
10 |
+
opencv-python
|
11 |
+
albumentations
|
12 |
+
gradio
|
train.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from tqdm import tqdm
|
6 |
+
import random
|
7 |
+
import json
|
8 |
+
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
#FIX
|
14 |
+
import config as CFG
|
15 |
+
from models import CLIPModel
|
16 |
+
from utils import AvgMeter, get_lr
|
17 |
+
from utils import get_datasets, build_loaders
|
18 |
+
|
19 |
+
def train_epoch(model, train_loader, optimizer, lr_scheduler, step):
|
20 |
+
"""
|
21 |
+
Performs one epoch of training.
|
22 |
+
|
23 |
+
Parameters:
|
24 |
+
-----------
|
25 |
+
model: PoemTextModel or CLIPModel
|
26 |
+
model to train
|
27 |
+
train_loader: torch.utils.data.DataLoader
|
28 |
+
dataloader to get batches from
|
29 |
+
optimizer: torch.optim.Optimizer
|
30 |
+
optimizer used for training
|
31 |
+
lr_scheduler: torch.optim.lr_scheduler.LRScheduler
|
32 |
+
scheduler used for training
|
33 |
+
step: str ("batch" or "epoch")
|
34 |
+
if "batch", lr_scheduler will step (update) for each batch of loader.
|
35 |
+
else lr_scheduler only steps and updates after finishing each epoch.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
--------
|
39 |
+
loss_meter: AvgMeter
|
40 |
+
the class containing average loss of this epoch's training
|
41 |
+
"""
|
42 |
+
loss_meter = AvgMeter() # to track average of loss
|
43 |
+
tqdm_object = tqdm(train_loader, total=len(train_loader))
|
44 |
+
for batch_cpu in tqdm_object:
|
45 |
+
# put batch data on device
|
46 |
+
batch = {k: {dict_k: dict_v.to(CFG.device) for dict_k, dict_v in v.items()} for k, v in batch_cpu.items() if not k in ["id", "image"]}
|
47 |
+
if "image" in batch_cpu:
|
48 |
+
batch["image"] = batch_cpu["image"].to(CFG.device)
|
49 |
+
|
50 |
+
#get model's embeddings and calculate loss
|
51 |
+
poem_or_img_embeddings, text_embeddings = model(batch)
|
52 |
+
loss = model.calculate_loss(poem_or_img_embeddings, text_embeddings)
|
53 |
+
|
54 |
+
# backpropagate and step
|
55 |
+
optimizer.zero_grad()
|
56 |
+
loss.backward()
|
57 |
+
optimizer.step()
|
58 |
+
if step == "batch":
|
59 |
+
lr_scheduler.step()
|
60 |
+
|
61 |
+
#update training info
|
62 |
+
count = batch["text"]["input_ids"].size(0)
|
63 |
+
loss_meter.update(loss.item(), count)
|
64 |
+
tqdm_object.set_postfix(train_loss=loss_meter.avg, lr=get_lr(optimizer))
|
65 |
+
# print('train loss: ', loss_meter.avg)
|
66 |
+
return loss_meter
|
67 |
+
|
68 |
+
|
69 |
+
def valid_epoch(model, valid_loader):
|
70 |
+
"""
|
71 |
+
Performs one epoch of validation.
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
-----------
|
75 |
+
model: PoemTextModel or CLIPModel
|
76 |
+
model to validate
|
77 |
+
valid_loader: torch.utils.data.DataLoader
|
78 |
+
dataloader to get batches from.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
--------
|
82 |
+
loss_meter: AvgMeter
|
83 |
+
the class containing average loss of this epoch's validation
|
84 |
+
"""
|
85 |
+
loss_meter = AvgMeter() # to track average of loss
|
86 |
+
tqdm_object = tqdm(valid_loader, total=len(valid_loader))
|
87 |
+
for batch_cpu in tqdm_object:
|
88 |
+
# put batch data on device
|
89 |
+
batch = {k: {dict_k: dict_v.to(CFG.device) for dict_k, dict_v in v.items()} for k, v in batch_cpu.items() if not k in ["id", "image"]}
|
90 |
+
if "image" in batch_cpu:
|
91 |
+
batch["image"] = batch_cpu["image"].to(CFG.device)
|
92 |
+
|
93 |
+
#get model's embeddings and calculate loss
|
94 |
+
poem_or_img_embeddings, text_embeddings = model(batch)
|
95 |
+
loss = model.calculate_loss(poem_or_img_embeddings, text_embeddings)
|
96 |
+
|
97 |
+
#update validation info
|
98 |
+
count = batch["text"]["input_ids"].size(0)
|
99 |
+
loss_meter.update(loss.item(), count)
|
100 |
+
tqdm_object.set_postfix(valid_loss=loss_meter.avg)
|
101 |
+
# print('validation loss: ', loss_meter.avg)
|
102 |
+
return loss_meter
|
103 |
+
|
104 |
+
def test(model, test_dataset):
|
105 |
+
"""
|
106 |
+
Calculates accuracy on test set.
|
107 |
+
This method is used for the PoemTextModel, since the other model (CLIPModel) does not have a test set containing pairs of image-poem.
|
108 |
+
|
109 |
+
Parameters:
|
110 |
+
-----------
|
111 |
+
model: PoemTextModel
|
112 |
+
model to test
|
113 |
+
test_dataset: list of dict
|
114 |
+
the list containing dict of data to perform test on (must have "text" and "poem" keys)
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
--------
|
118 |
+
accuracy: np.float
|
119 |
+
The accuracy of model on the test set given
|
120 |
+
"""
|
121 |
+
test_loader = build_loaders(test_dataset, mode="test")
|
122 |
+
accuracy = 0
|
123 |
+
tqdm_object = tqdm(test_loader, total=len(test_loader))
|
124 |
+
model.eval()
|
125 |
+
with torch.no_grad():
|
126 |
+
for batch_cpu in tqdm_object:
|
127 |
+
# put batch data on device
|
128 |
+
batch = {k: {dict_k: dict_v.to(CFG.device) for dict_k, dict_v in v.items()} for k, v in batch_cpu.items() if not k in ["id", "image"]}
|
129 |
+
if "image" in batch_cpu:
|
130 |
+
batch["image"] = batch_cpu["image"].to(CFG.device)
|
131 |
+
|
132 |
+
# get model's prediction for each text (a numpy array of index/labels showing which poem belongs to which text)
|
133 |
+
pred = model.predict(batch).cpu().numpy()
|
134 |
+
|
135 |
+
count = batch["text"]["input_ids"].size(0)
|
136 |
+
# since each text is associated with the poem with the same index as it, np.arange(count) is the real labels.
|
137 |
+
acc = np.sum(pred == np.arange(count))
|
138 |
+
accuracy += acc
|
139 |
+
|
140 |
+
tqdm_object.set_postfix(accuracy=acc / count)
|
141 |
+
accuracy /= len(test_dataset)
|
142 |
+
return accuracy
|
143 |
+
|
144 |
+
def train(model, train_loader, valid_loader, epochs=CFG.epochs):
|
145 |
+
"""
|
146 |
+
Performs train and validation for (epochs) epochs.
|
147 |
+
|
148 |
+
Parameters:
|
149 |
+
-----------
|
150 |
+
model: PoemTextModel or CLIPModel
|
151 |
+
model to train
|
152 |
+
train_loader: torch.utils.data.DataLoader
|
153 |
+
train dataloader to get batches from
|
154 |
+
valid_loader: torch.utils.data.DataLoader
|
155 |
+
validation dataloader to get batches from
|
156 |
+
epochs: int, optional
|
157 |
+
the number of epochs to train
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
--------
|
161 |
+
model: PoemTextModel or CLIPModel
|
162 |
+
trained model
|
163 |
+
loss_history: dict
|
164 |
+
a dict containing train and validation average loss for each epoch.
|
165 |
+
"""
|
166 |
+
# Using AdamW optimizer and ReduceLROnPlateau lr-scheduler with settings from config
|
167 |
+
optimizer = torch.optim.AdamW(
|
168 |
+
model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay
|
169 |
+
)
|
170 |
+
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
171 |
+
optimizer, mode="min", patience=CFG.patience, factor=CFG.factor
|
172 |
+
)
|
173 |
+
|
174 |
+
# if step="batch", lr_scheduler will step (update) for each batch of loader.
|
175 |
+
# else lr_scheduler only steps and updates after finishing each epoch. (this case)
|
176 |
+
step = "epoch"
|
177 |
+
loss_history = {"train":[], "valid":[]}
|
178 |
+
|
179 |
+
# to keep track of best validation loss
|
180 |
+
best_loss = float('inf')
|
181 |
+
for epoch in range(CFG.epochs):
|
182 |
+
print(f"Epoch: {epoch + 1}")
|
183 |
+
# train for one epoch
|
184 |
+
model.train()
|
185 |
+
train_loss = train_epoch(model, train_loader, optimizer, lr_scheduler, step)
|
186 |
+
loss_history["train"].append(train_loss.avg)
|
187 |
+
|
188 |
+
# validate trained model
|
189 |
+
model.eval()
|
190 |
+
with torch.no_grad():
|
191 |
+
valid_loss = valid_epoch(model, valid_loader)
|
192 |
+
loss_history["valid"].append(valid_loss.avg)
|
193 |
+
|
194 |
+
# if this epoch's avg validation loss is lower than best loss, save and keep this model.
|
195 |
+
if valid_loss.avg < best_loss:
|
196 |
+
best_loss = valid_loss.avg
|
197 |
+
model.save_current()
|
198 |
+
print("Saved Best Model!")
|
199 |
+
|
200 |
+
if step == "epoch":
|
201 |
+
lr_scheduler.step(valid_loss.avg)
|
202 |
+
return model, loss_history
|
utils.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import config as CFG
|
2 |
+
import json
|
3 |
+
from models import PoemTextModel
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
from datasets import PoemTextDataset, get_transforms, CLIPDataset
|
7 |
+
from tqdm import tqdm
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
class AvgMeter:
|
11 |
+
"""
|
12 |
+
Used to keep track of batch losses during training / validation.
|
13 |
+
...
|
14 |
+
Attributes:
|
15 |
+
-----------
|
16 |
+
name : str
|
17 |
+
count : int
|
18 |
+
number of data whose train/val loss has been metered
|
19 |
+
sum: int or float
|
20 |
+
sum of all losses metered
|
21 |
+
avg: int or float
|
22 |
+
average of metered losses
|
23 |
+
|
24 |
+
Methods:
|
25 |
+
--------
|
26 |
+
reset():
|
27 |
+
Sets count, sum and avg to 0.
|
28 |
+
update(val, count=1):
|
29 |
+
Updates loss sum, count and avg.
|
30 |
+
__repr__():
|
31 |
+
string representation of this class.
|
32 |
+
"""
|
33 |
+
def __init__(self, name="Metric"):
|
34 |
+
"""Sets the name of the avg meter. sets avg, sum & count to 0."""
|
35 |
+
self.name = name
|
36 |
+
self.reset()
|
37 |
+
|
38 |
+
def reset(self):
|
39 |
+
"""Sets avg, sum & count to 0."""
|
40 |
+
self.avg, self.sum, self.count = [0] * 3
|
41 |
+
|
42 |
+
def update(self, val, count=1):
|
43 |
+
"""Updates loss sum, count and avg using val and count (count of the val input)"""
|
44 |
+
self.count += count
|
45 |
+
self.sum += val * count
|
46 |
+
self.avg = self.sum / self.count
|
47 |
+
|
48 |
+
def __repr__(self):
|
49 |
+
"""String representation of this class"""
|
50 |
+
text = f"{self.name}: {self.avg:.4f}"
|
51 |
+
return text
|
52 |
+
|
53 |
+
def get_lr(optimizer):
|
54 |
+
"""Returns learning rate of the input optimizer"""
|
55 |
+
for param_group in optimizer.param_groups:
|
56 |
+
return param_group["lr"]
|
57 |
+
|
58 |
+
def get_datasets():
|
59 |
+
"""
|
60 |
+
Returns train, validation & test split from a dataset json file specified using CFG.dataset_path.
|
61 |
+
This function first loads the file into a list of dict and shuffles them with CFG.random_seed seed,
|
62 |
+
then splits them using CFG.train_propotion & CFG.val_propotion.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
--------
|
66 |
+
train_dataset: list of dict
|
67 |
+
Train split
|
68 |
+
val_dataset: list of dict
|
69 |
+
Validation split
|
70 |
+
test_dataset: list of dict
|
71 |
+
Test split
|
72 |
+
"""
|
73 |
+
with open(CFG.dataset_path, encoding="utf-8") as f:
|
74 |
+
dataset = json.load(f)
|
75 |
+
random.Random(CFG.random_seed).shuffle(dataset)
|
76 |
+
# https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-sets-train-validation-and-test
|
77 |
+
train_dataset, val_dataset, test_dataset = np.split(dataset,
|
78 |
+
[int(CFG.train_propotion*len(dataset)), int((CFG.train_propotion + CFG.val_propotion)*len(dataset))])
|
79 |
+
return train_dataset, val_dataset, test_dataset
|
80 |
+
|
81 |
+
|
82 |
+
def build_loaders(dataset_dict, mode):
|
83 |
+
"""
|
84 |
+
Returns a torch Dataloader from a list of dictionaries (dataset_dict).
|
85 |
+
First makes a PoemTextDataset which is a torch Dataset object from dataset_dict and then instantiates a Dataloader.
|
86 |
+
|
87 |
+
Parameters:
|
88 |
+
-----------
|
89 |
+
dataset_dict: list of dict
|
90 |
+
the dataset to return a dataloader of.
|
91 |
+
mode: str ("train" or any other word)
|
92 |
+
if the mode is "train", dataloader will activate shuffling.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
--------
|
96 |
+
dataloader: torch.utils.data.DataLoader
|
97 |
+
the torch Dataloader created from dataset_dict using PoemTextDataset and configs.
|
98 |
+
"""
|
99 |
+
dataset = PoemTextDataset(
|
100 |
+
dataset_dict
|
101 |
+
)
|
102 |
+
dataloader = torch.utils.data.DataLoader(
|
103 |
+
dataset,
|
104 |
+
batch_size=CFG.batch_size,
|
105 |
+
num_workers=CFG.num_workers,
|
106 |
+
shuffle=True if mode == "train" else False,
|
107 |
+
)
|
108 |
+
return dataloader
|
109 |
+
|
110 |
+
def get_clip_datasets(dataset_dict):
|
111 |
+
"""
|
112 |
+
(Used for clip model training) Returns train, validation & test split from input.
|
113 |
+
This function takes a list of dict as dataset and shuffles them with CFG.random_seed seed,
|
114 |
+
then splits them using CFG.train_propotion & CFG.val_propotion.
|
115 |
+
|
116 |
+
Parameters:
|
117 |
+
-----------
|
118 |
+
dataset_dict: list of dict
|
119 |
+
the input dataset
|
120 |
+
Returns:
|
121 |
+
--------
|
122 |
+
train_dataset: list of dict
|
123 |
+
Train split
|
124 |
+
val_dataset: list of dict
|
125 |
+
Validation split
|
126 |
+
test_dataset: list of dict
|
127 |
+
Test split
|
128 |
+
"""
|
129 |
+
random.Random(CFG.random_seed).shuffle(dataset_dict)
|
130 |
+
# https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-sets-train-validation-and-test
|
131 |
+
train_dataset, val_dataset, test_dataset = np.split(dataset_dict,
|
132 |
+
[int(CFG.train_propotion*len(dataset_dict)), int((CFG.train_propotion + CFG.val_propotion)*len(dataset_dict))])
|
133 |
+
return train_dataset, val_dataset, test_dataset
|
134 |
+
|
135 |
+
|
136 |
+
def build_image_loaders(dataset_dict, mode):
|
137 |
+
"""
|
138 |
+
(Used for clip model training) Returns a torch Dataloader from a list of dictionaries (dataset_dict).
|
139 |
+
First makes a PoemTextDataset which is a torch Dataset object from dataset_dict and then instantiates a Dataloader.
|
140 |
+
|
141 |
+
Parameters:
|
142 |
+
-----------
|
143 |
+
dataset_dict: list of dict
|
144 |
+
the dataset to return a dataloader of.
|
145 |
+
mode: str ("train" or any other word)
|
146 |
+
if the mode is "train", dataloader will activate shuffling.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
--------
|
150 |
+
dataloader: torch.utils.data.DataLoader
|
151 |
+
the torch Dataloader created from dataset_dict using CLIPDataset and configs.
|
152 |
+
"""
|
153 |
+
transforms = get_transforms(mode=mode)
|
154 |
+
dataset = CLIPDataset(
|
155 |
+
dataset_dict, transforms, is_image_poem_pair=False
|
156 |
+
)
|
157 |
+
dataloader = torch.utils.data.DataLoader(
|
158 |
+
dataset,
|
159 |
+
batch_size=CFG.batch_size,
|
160 |
+
num_workers=CFG.num_workers,
|
161 |
+
shuffle=True if mode == "train" else False,
|
162 |
+
)
|
163 |
+
return dataloader
|
164 |
+
|
165 |
+
def get_poem_embeddings(test_dataset, model=None):
|
166 |
+
"""
|
167 |
+
Returns embeddings of the poems existing in test_dataset.
|
168 |
+
|
169 |
+
Parameters:
|
170 |
+
-----------
|
171 |
+
test_dataset: list of dict
|
172 |
+
dataset to get poems from. each of its dictionaries must have a "beyt" key.
|
173 |
+
model: PoemTextModel, optional
|
174 |
+
The PoemTextModel model to get poem embeddings from.
|
175 |
+
If None is given, instantiates a new model (with all of its parts in pretrained settings) using configurations provided in config.py.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
--------
|
179 |
+
model (PoemTextModel): The model used for creating poem embeddings
|
180 |
+
"""
|
181 |
+
test_loader = build_loaders(test_dataset, mode="test") # building a dataloder (which also tokenizes the poems)
|
182 |
+
|
183 |
+
if model == None:
|
184 |
+
model = PoemTextModel(True, False, True, False, poem_projection_pretrained=True, text_projection_pretrained=True).to(CFG.device)
|
185 |
+
model.eval()
|
186 |
+
|
187 |
+
poem_embeddings = []
|
188 |
+
with torch.no_grad():
|
189 |
+
for batch in tqdm(test_loader):
|
190 |
+
# get poem embeddings by passing tokenizer output of the poems
|
191 |
+
# to the model's poem encoder and projection
|
192 |
+
beyts = {
|
193 |
+
key: values.to(CFG.device)
|
194 |
+
for key, values in batch["beyt"].items()
|
195 |
+
}
|
196 |
+
if model.__class__.__name__ == "PoemTextModel":
|
197 |
+
poem_features = model.poem_encoder(input_ids=beyts["input_ids"], attention_mask=beyts["attention_mask"])
|
198 |
+
poem_emb = model.poem_projection(poem_features)
|
199 |
+
poem_embeddings.append(poem_emb)
|
200 |
+
elif model.__class__.__name__ == "CLIPModel":
|
201 |
+
poem_features = model.encoder(input_ids=beyts["input_ids"], attention_mask=beyts["attention_mask"])
|
202 |
+
poem_emb = model.text_projection(poem_features)
|
203 |
+
poem_embeddings.append(poem_emb)
|
204 |
+
else:
|
205 |
+
raise #not a right model to use!
|
206 |
+
|
207 |
+
return model, torch.cat(poem_embeddings)
|