Spaces:
Runtime error
Runtime error
mojtaba-nafez
commited on
Commit
•
fd6aade
1
Parent(s):
1385d75
fix app.py to read from saved poem_embeddings.json
Browse files- app.py +8 -4
- inference.py +64 -8
app.py
CHANGED
@@ -3,6 +3,7 @@ from inference import predict_poems_from_text
|
|
3 |
from utils import get_poem_embeddings
|
4 |
import config as CFG
|
5 |
import json
|
|
|
6 |
import gradio as gr
|
7 |
|
8 |
def greet_user(name):
|
@@ -12,15 +13,18 @@ if __name__ == "__main__":
|
|
12 |
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
13 |
model.eval()
|
14 |
# Inference: Output some example predictions and write them in a file
|
15 |
-
with open(
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def gradio_make_predictions(text):
|
19 |
-
beyts = predict_poems_from_text(model, poem_embeddings, text,
|
20 |
return "\n".join(beyts)
|
21 |
|
22 |
CFG.batch_size = 512
|
23 |
-
model, poem_embeddings = get_poem_embeddings(dataset, model)
|
24 |
# print(poem_embeddings[0])
|
25 |
# with open('poem_embeddings.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
26 |
# f.write(json.dumps(poem_embeddings, indent= 4))
|
|
|
3 |
from utils import get_poem_embeddings
|
4 |
import config as CFG
|
5 |
import json
|
6 |
+
import torch
|
7 |
import gradio as gr
|
8 |
|
9 |
def greet_user(name):
|
|
|
13 |
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
14 |
model.eval()
|
15 |
# Inference: Output some example predictions and write them in a file
|
16 |
+
with open('poem_embeddings.json', encoding="utf-8") as f:
|
17 |
+
pe = json.load(f)
|
18 |
+
|
19 |
+
poem_embeddings = torch.Tensor([p['embeddings'] for p in pe]).to(CFG.device)
|
20 |
+
print(poem_embeddings.shape)
|
21 |
+
poems = [p['beyt'] for p in pe]
|
22 |
|
23 |
def gradio_make_predictions(text):
|
24 |
+
beyts = predict_poems_from_text(model, poem_embeddings, text, poems, n=10)
|
25 |
return "\n".join(beyts)
|
26 |
|
27 |
CFG.batch_size = 512
|
|
|
28 |
# print(poem_embeddings[0])
|
29 |
# with open('poem_embeddings.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
30 |
# f.write(json.dumps(poem_embeddings, indent= 4))
|
inference.py
CHANGED
@@ -12,9 +12,10 @@ from models import PoemTextModel
|
|
12 |
from utils import get_poem_embeddings
|
13 |
import json
|
14 |
import os
|
|
|
15 |
|
16 |
|
17 |
-
def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer=None, n=10):
|
18 |
"""
|
19 |
Returns n poems which are the most similar to a text query
|
20 |
|
@@ -32,6 +33,8 @@ def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer
|
|
32 |
tokenizer to tokenize query with. if none, will instantiate a new text tokenizer using configs.
|
33 |
n: int, optional
|
34 |
number of poems to return
|
|
|
|
|
35 |
|
36 |
Returns:
|
37 |
--------
|
@@ -63,11 +66,36 @@ def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer
|
|
63 |
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
|
64 |
|
65 |
# returning top n poems based on embedding similarity
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"""
|
72 |
Returns n poems which are the most similar to an image query
|
73 |
|
@@ -83,6 +111,8 @@ def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10
|
|
83 |
poems corresponding to poem_embeddings
|
84 |
n: int, optional
|
85 |
number of poems to return
|
|
|
|
|
86 |
|
87 |
Returns:
|
88 |
--------
|
@@ -107,8 +137,34 @@ def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10
|
|
107 |
dot_similarity = image_embeddings_n @ poem_embeddings_n.T
|
108 |
|
109 |
# returning top n poems based on embedding similarity
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
"""
|
|
|
12 |
from utils import get_poem_embeddings
|
13 |
import json
|
14 |
import os
|
15 |
+
import regex
|
16 |
|
17 |
|
18 |
+
def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer=None, n=10, return_similarities=False):
|
19 |
"""
|
20 |
Returns n poems which are the most similar to a text query
|
21 |
|
|
|
33 |
tokenizer to tokenize query with. if none, will instantiate a new text tokenizer using configs.
|
34 |
n: int, optional
|
35 |
number of poems to return
|
36 |
+
return_similarities: bool, optional
|
37 |
+
if True, a dictionary will be returned which has the poem beyts and their similarities to the text
|
38 |
|
39 |
Returns:
|
40 |
--------
|
|
|
66 |
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
|
67 |
|
68 |
# returning top n poems based on embedding similarity
|
69 |
+
values, indices = torch.topk(dot_similarity.squeeze(0), len(poems))
|
70 |
+
|
71 |
+
# since we collected poems from many sources, some of them are equal (the same beyt with different meanings),
|
72 |
+
# so we must check the poems added to result not to be duplicates
|
73 |
+
def is_poem_duplicate(poem, poems):
|
74 |
+
poem = regex.findall(r'\p{L}+', poem.replace('\u200c', ''))
|
75 |
+
for other_poem in poems:
|
76 |
+
other_poem = regex.findall(r'\p{L}+', other_poem.replace('\u200c', ''))
|
77 |
+
if poem == other_poem:
|
78 |
+
return True
|
79 |
+
return False
|
80 |
+
|
81 |
+
results = []
|
82 |
+
computed_k = 0
|
83 |
+
for i in range(len(poems)):
|
84 |
+
if computed_k == n:
|
85 |
+
break
|
86 |
+
if not is_poem_duplicate(poems[indices[i]], [res['beyt'] for res in results]):
|
87 |
+
results.append({
|
88 |
+
'beyt': poems[indices[i]].replace(' * * ', ' * ').replace('*** * ', ''),
|
89 |
+
'similarity': values[i]
|
90 |
+
})
|
91 |
+
computed_k += 1
|
92 |
+
if return_similarities:
|
93 |
+
return results
|
94 |
+
else:
|
95 |
+
return [res['beyt'] for res in results]
|
96 |
+
|
97 |
+
|
98 |
+
def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10, return_similarities=False):
|
99 |
"""
|
100 |
Returns n poems which are the most similar to an image query
|
101 |
|
|
|
111 |
poems corresponding to poem_embeddings
|
112 |
n: int, optional
|
113 |
number of poems to return
|
114 |
+
return_similarities: bool, optional
|
115 |
+
if True, a dictionary will be returned which has the poem beyts and their similarities to the text
|
116 |
|
117 |
Returns:
|
118 |
--------
|
|
|
137 |
dot_similarity = image_embeddings_n @ poem_embeddings_n.T
|
138 |
|
139 |
# returning top n poems based on embedding similarity
|
140 |
+
values, indices = torch.topk(dot_similarity.squeeze(0), len(poems))
|
141 |
+
|
142 |
+
# since we collected poems from many sources, some of them are equal (the same beyt with different meanings),
|
143 |
+
# so we must check the poems added to result not to be duplicates
|
144 |
+
def is_poem_duplicate(poem, poems):
|
145 |
+
poem = regex.findall(r'\p{L}+', poem.replace('\u200c', ''))
|
146 |
+
for other_poem in poems:
|
147 |
+
other_poem = regex.findall(r'\p{L}+', other_poem.replace('\u200c', ''))
|
148 |
+
if poem == other_poem:
|
149 |
+
return True
|
150 |
+
return False
|
151 |
+
|
152 |
+
results = []
|
153 |
+
computed_k = 0
|
154 |
+
for i in range(len(poems)):
|
155 |
+
if computed_k == n:
|
156 |
+
break
|
157 |
+
if not is_poem_duplicate(poems[indices[i]], [res['beyt'] for res in results]):
|
158 |
+
results.append({
|
159 |
+
'beyt': poems[indices[i]].replace(' * * ', ' * ').replace('*** * ', ''),
|
160 |
+
'similarity': values[i]
|
161 |
+
})
|
162 |
+
computed_k += 1
|
163 |
+
if return_similarities:
|
164 |
+
return results
|
165 |
+
else:
|
166 |
+
return [res['beyt'] for res in results]
|
167 |
+
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
"""
|