""" baseline_interactive.py """ import gradio as gr from transformers import MBartForConditionalGeneration, MBartTokenizer from transformers import pipeline model_name = "momo/rsp-sum" model = MBartForConditionalGeneration.from_pretrained(model_name) tokenizer = MBartTokenizer.from_pretrained(model_name, src_lang="ko_KR", tgt_lang="ko_KR") # prefix = "translate English to German: " def summarization(model_name, text): summarizer = pipeline("summarization", model=model, tokenizer=tokenizer) summarizer("An apple a day, keeps the doctor away", min_length=50, max_length=150) for result in summarizer(text): print(result) return result if __name__ == '__main__': #Create a gradio app with a button that calls predict() app = gr.Interface( fn=summarization, inputs='text', outputs='text', title="News Summary Generator", description="News Summary Generator" ) app.launch() # with torch.no_grad(): # while True: # t = input("\nDocument: ") # tokens = tokenizer( # t, # return_tensors="pt", # truncation=True, # padding=True, # max_length=600 # ) # input_ids = tokens.input_ids.cuda() # attention_mask = tokens.attention_mask.cuda() # sample_output = model.generate( # input_ids, # max_length=150, # num_beams=5, # early_stopping=True, # no_repeat_ngram_size=8, # ) # # print("token:" + str(input_ids.detach().cpu())) # # print("token:" + tokenizer.convert_ids_to_tokens(str(input_ids.detach().cpu()))) # print("Summary: " + tokenizer.decode(sample_output[0], skip_special_tokens=True))