monaavr commited on
Commit
3c9c267
β€’
1 Parent(s): 54c8f38

Sync App files

Browse files
Files changed (3) hide show
  1. README.md +5 -5
  2. drug_app.py +57 -0
  3. requirements.txt +4 -1
README.md CHANGED
@@ -1,11 +1,11 @@
1
  ---
2
  title: Drug Classification
3
- emoji: πŸ’Š
4
- colorFrom: yellow
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.16.0
8
- app_file: App/drug_app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
1
  ---
2
  title: Drug Classification
3
+ emoji: 🐒
4
+ colorFrom: green
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.40.0
8
+ app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
drug_app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import skops.io as sio
3
+
4
+ pipe = sio.load("Model/drug_pipeline.skops", trusted=sio.get_untrusted_types(file = "Model/drug_pipeline.skops"))
5
+
6
+ def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
7
+ """
8
+ Predict drugs based on patient features.
9
+
10
+ Args:
11
+ age (int): Age of patient
12
+ sex (str): Sex of patient
13
+ blood_pressure (str): Blood pressure level
14
+ cholesterol (str): Cholesterol level
15
+ na_to_k_ratio (float): Ratio of sodium to potassium in blood
16
+
17
+ Returns:
18
+ str: Predicted drug label
19
+ """
20
+ features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
21
+ predicted_drug = pipe.predict([features])[0]
22
+
23
+ label = f"Predicted Drug: {predicted_drug}"
24
+ return label
25
+
26
+ inputs = [
27
+ gr.Slider(15, 74, step=1, label="Age"),
28
+ gr.Radio(["M", "F"], label="Sex"),
29
+ gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
30
+ gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
31
+ gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
32
+ ]
33
+ outputs = [gr.Label(num_top_classes=5)]
34
+
35
+ examples = [
36
+ [30, "M", "HIGH", "NORMAL", 15.4],
37
+ [35, "F", "LOW", "NORMAL", 8],
38
+ [50, "M", "HIGH", "HIGH", 34],
39
+ ]
40
+
41
+
42
+ title = "Drug Classification"
43
+ description = "Enter the details to correctly identify Drug type?"
44
+ article = "This app is a part of the Beginner's Guide to CI/CD for Machine Learning. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
45
+
46
+
47
+ gr.Interface(
48
+ fn=predict_drug,
49
+ inputs=inputs,
50
+ outputs=outputs,
51
+ examples=examples,
52
+ title=title,
53
+ description=description,
54
+ article=article,
55
+ theme=gr.themes.Soft(),
56
+ ).launch()
57
+
requirements.txt CHANGED
@@ -1,2 +1,5 @@
1
  scikit-learn
2
- skops
 
 
 
 
1
  scikit-learn
2
+ skops
3
+ black
4
+ pandas
5
+ matplotlib