Spaces:
Runtime error
Runtime error
VikasQblocks
commited on
Commit
β’
c85864b
1
Parent(s):
f8d2db0
Add LLM Comparison gradio application that uses monster API in backend
Browse files- MonsterAPIClient.py +144 -0
- README.md +4 -4
- gradio_app.py +54 -0
- requirements.txt +4 -0
MonsterAPIClient.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#MonsterAPIClient.py
|
2 |
+
|
3 |
+
"""
|
4 |
+
Monster API Python client to connect to LLM models on monsterapi
|
5 |
+
|
6 |
+
Base URL: https://api.monsterapi.ai/v1/generate/{model}
|
7 |
+
|
8 |
+
Available models:
|
9 |
+
-----------------
|
10 |
+
1. falcon-7b-instruct
|
11 |
+
2. falcon-40b-instruct
|
12 |
+
3. mpt-30B-instruct
|
13 |
+
4. mpt-7b-instruct
|
14 |
+
5. openllama-13b-base
|
15 |
+
6. llama2-7b-chat
|
16 |
+
|
17 |
+
"""
|
18 |
+
import os
|
19 |
+
import time
|
20 |
+
import logging
|
21 |
+
import requests
|
22 |
+
from requests_toolbelt.multipart.encoder import MultipartEncoder
|
23 |
+
|
24 |
+
from typing import Optional, Literal, Union, List, Dict
|
25 |
+
from pydantic import BaseModel, Field
|
26 |
+
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class InputModel1(BaseModel):
|
32 |
+
"""
|
33 |
+
Supports Following models: Falcon-40B-instruct, Falcon-7B-instruct, openllama-13b-base, llama2-7b-chat
|
34 |
+
|
35 |
+
prompt string Prompt is a textual instruction for the model to produce an output. Required
|
36 |
+
top_k integer Top-k sampling helps improve quality by removing the tail and making it less likely to go off topic. Optional
|
37 |
+
(Default: 40)
|
38 |
+
top_p float Top-p sampling helps generate more diverse and creative text by considering a broader range of tokens. Optional
|
39 |
+
(Default: 1.0)
|
40 |
+
temp float The temperature influences the randomness of the next token predictions. Optional
|
41 |
+
(Default: 0.98)
|
42 |
+
max_length integer The maximum length of the generated text. Optional
|
43 |
+
(Default: 256)
|
44 |
+
repetition_penalty float The model uses this penalty to discourage the repetition of tokens in the output. Optional
|
45 |
+
(Default: 1.2)
|
46 |
+
beam_size integer The beam size for beam search. A larger beam size results in better quality output, but slower generation times. Optional
|
47 |
+
(Default: 1)
|
48 |
+
"""
|
49 |
+
prompt: str
|
50 |
+
top_k: int = 40
|
51 |
+
top_p: float = Field(0.9, ge=0., le=1.)
|
52 |
+
temp: float = Field(0.98, ge=0., le=1.)
|
53 |
+
max_length: int = 256
|
54 |
+
repetition_penalty: float = 1.2
|
55 |
+
beam_size: int = 1
|
56 |
+
|
57 |
+
|
58 |
+
class InputModel2(BaseModel):
|
59 |
+
"""
|
60 |
+
Supports Following models: MPT-30B-instruct, MPT-7B-instruct
|
61 |
+
|
62 |
+
prompt: string Instruction is a textual command for the model to produce an output. Required
|
63 |
+
top_k integer Top-k sampling helps improve quality by removing the tail and making it less likely to go off topic. Optional
|
64 |
+
(Default: 40)
|
65 |
+
top_p float Top-p sampling helps generate more diverse and creative text by considering a broader range of tokens. Optional
|
66 |
+
Allowed Range: 0 - 1
|
67 |
+
(Default: 1.0)
|
68 |
+
temp float Temperature is a parameter that controls the randomness of the model's output. The higher the temperature, the more random the output. Optional
|
69 |
+
(Default: 0.98)
|
70 |
+
max_length integer Maximum length of the generated output. Optional
|
71 |
+
(Default: 256)
|
72 |
+
"""
|
73 |
+
prompt: str
|
74 |
+
top_k: int = 40
|
75 |
+
top_p: float = Field(0.9, ge=0., le=1.)
|
76 |
+
temp: float = Field(0.98, ge=0., le=1.)
|
77 |
+
max_length: int = 256
|
78 |
+
|
79 |
+
MODELS_TO_DATAMODEL = {
|
80 |
+
'falcon-7b-instruct': InputModel1,
|
81 |
+
'falcon-40b-instruct': InputModel1,
|
82 |
+
'mpt-30B-instruct': InputModel2,
|
83 |
+
'mpt-7b-instruct': InputModel2,
|
84 |
+
'openllama-13b-base': InputModel1,
|
85 |
+
'llama2-7b-chat': InputModel1
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
class MClient():
|
90 |
+
def __init__(self):
|
91 |
+
self.boundary = '---011000010111000001101001'
|
92 |
+
self.auth_token = os.environ.get('MONSTER_API_TOKEN')
|
93 |
+
self.headers = {
|
94 |
+
"accept": "application/json",
|
95 |
+
"content-type": f"multipart/form-data; boundary={self.boundary}",
|
96 |
+
'Authorization': 'Bearer ' + self.auth_token}
|
97 |
+
self.base_url = 'https://api.monsterapi.ai/v1'
|
98 |
+
self.models_to_data_model = MODELS_TO_DATAMODEL
|
99 |
+
self.mock = os.environ.get('MOCK_Runner', "True").lower() == "true"
|
100 |
+
|
101 |
+
def get_response(self, model:Literal['falcon-20b-instruct', 'falcon-7b-instruct', 'mpt-30B-instruct', 'mpt-7B-instruct'],
|
102 |
+
data: dict):
|
103 |
+
|
104 |
+
if model not in self.models_to_data_model:
|
105 |
+
raise ValueError(f"Invalid model: {model}!")
|
106 |
+
|
107 |
+
dataModel = self.models_to_data_model[model](**data)
|
108 |
+
url = f"{self.base_url}/generate/{model}"
|
109 |
+
#url = self.base_url + model
|
110 |
+
data = dataModel.dict()
|
111 |
+
# convert all values into string
|
112 |
+
for key, value in data.items():
|
113 |
+
data[key] = str(value)
|
114 |
+
multipart_data = MultipartEncoder(fields=data, boundary=self.boundary)
|
115 |
+
response = requests.post(url, headers=self.headers, data=multipart_data)
|
116 |
+
response.raise_for_status()
|
117 |
+
return response.json()
|
118 |
+
|
119 |
+
def get_status(self, process_id):
|
120 |
+
# /v1/status/{process_id}
|
121 |
+
url = f"{self.base_url}/status/{process_id}"
|
122 |
+
response = requests.get(url, headers=self.headers)
|
123 |
+
response.raise_for_status()
|
124 |
+
return response.json()
|
125 |
+
|
126 |
+
def wait_and_get_result(self, process_id):
|
127 |
+
while True:
|
128 |
+
status = self.get_status(process_id)
|
129 |
+
if status['status'].lower() == 'completed':
|
130 |
+
return status['result']
|
131 |
+
elif status['status'].lower() == 'failed':
|
132 |
+
raise RuntimeError(f"Process {process_id} failed!")
|
133 |
+
else:
|
134 |
+
if self.mock:
|
135 |
+
return 100*"Mock Output!"
|
136 |
+
logger.info(f"Process {process_id} is still running, status is {status['status']}. Waiting for 5 seconds...")
|
137 |
+
time.sleep(1)
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == '__main__':
|
141 |
+
client = MClient()
|
142 |
+
response = client.get_response('falcon-7b-instruct', {"prompt": 'How to make a sandwich'})
|
143 |
+
output = client.wait_and_get_result(response['process_id'])
|
144 |
+
print(output)
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.38.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
1 |
---
|
2 |
+
title: MonsterAPI LLM Comparison
|
3 |
emoji: π
|
4 |
+
colorFrom: white
|
5 |
+
colorTo: blacke
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.38.0
|
8 |
+
app_file: gradio_app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
gradio_app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from tqdm import tqdm
|
4 |
+
from MonsterAPIClient import MClient
|
5 |
+
from MonsterAPIClient import MODELS_TO_DATAMODEL
|
6 |
+
client = MClient()
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
# Available models list
|
11 |
+
EXCLUSION_LIST = ['mpt-30B-instruct']
|
12 |
+
available_models = list(set(list(MODELS_TO_DATAMODEL.keys())) - set(EXCLUSION_LIST))
|
13 |
+
|
14 |
+
def generate_model_output(model, input_text):
|
15 |
+
try:
|
16 |
+
response = client.get_response(model, {"prompt": input_text})
|
17 |
+
output = client.wait_and_get_result(response['process_id'])
|
18 |
+
return output
|
19 |
+
except Exception as e:
|
20 |
+
return f"Error occurred: {str(e)}"
|
21 |
+
|
22 |
+
# Gradio interface function
|
23 |
+
def generate_output(selected_models, input_text, available_models=available_models):
|
24 |
+
outputs = {}
|
25 |
+
for model in tqdm(selected_models):
|
26 |
+
outputs[model] = generate_model_output(model, input_text)
|
27 |
+
ret_outputs = []
|
28 |
+
for model in available_models:
|
29 |
+
if model not in outputs:
|
30 |
+
ret_outputs.append("Model not selected!")
|
31 |
+
else:
|
32 |
+
ret_outputs.append(outputs[model].replace("\n", "<br>"))
|
33 |
+
|
34 |
+
return ret_outputs
|
35 |
+
|
36 |
+
output_components = [gr.outputs.Textbox(label=model) for model in available_models]
|
37 |
+
|
38 |
+
checkboxes = gr.inputs.CheckboxGroup(available_models , label="Select models to generate outputs:")
|
39 |
+
textbox = gr.inputs.Textbox()
|
40 |
+
|
41 |
+
# Gradio Interface
|
42 |
+
input_text = gr.Interface(
|
43 |
+
fn=generate_output,
|
44 |
+
inputs=[checkboxes, textbox],
|
45 |
+
outputs=output_components,
|
46 |
+
live=False,
|
47 |
+
capture_session=True,
|
48 |
+
title="Monster API LLM Output Comparison.",
|
49 |
+
description="Generate outputs from selected models using Monster API.",
|
50 |
+
css="body {background-color: black}"
|
51 |
+
)
|
52 |
+
|
53 |
+
# Launch the Gradio app
|
54 |
+
input_text.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
requests-toolbelt
|
3 |
+
pydantic
|
4 |
+
gradio
|