File size: 15,501 Bytes
c4c1f86 e5488fa c4c1f86 e5488fa c4c1f86 e5488fa 6db0d50 d83086a c4c1f86 d83086a c4c1f86 870825a d30b53e c4c1f86 870825a d30b53e c4c1f86 fc08326 c4c1f86 cc9e53d d30b53e cc9e53d d30b53e cc9e53d d30b53e cc9e53d d30b53e cc9e53d d30b53e cc9e53d d30b53e c4c1f86 d30b53e c4c1f86 d30b53e c4c1f86 d30b53e 5e0defb bc864b5 5e0defb c4c1f86 d30b53e c4c1f86 e97404d c4c1f86 d30b53e c4c1f86 d30b53e c4c1f86 d30b53e c4c1f86 652bd1f c4c1f86 d30b53e c4c1f86 d30b53e c4c1f86 d30b53e c4c1f86 e97404d d30b53e c4c1f86 03314b2 c4c1f86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# app.py
import os
import json
import streamlit as st
from PIL import Image
import google.generativeai as genai
import ast
#from utils import findImg
import io
from streamlit_TTS import auto_play
import torch
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf
from gtts import gTTS
import io
from mistralai.models.chat_completion import ChatMessage
from mistralai.client import MistralClient
from audiorecorder import audiorecorder
import base64
###
import os
import cv2
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from diffusers import StableDiffusionPipeline
import torch
import re
import ast
import streamlit as st
def add_logo():
st.markdown(
"""
<style>
[data-testid="stSidebarNav"] {
/*background-image: url(http://placekitten.com/200/200);*/
background-repeat: no-repeat;
#padding-top: 120px;
background-position: 20px 20px;
}
[data-testid="stSidebarNav"]::before {
content: "MO3ALIMI sidebar";
margin-left: 20px;
margin-top: 20px;
font-size: 29px;
position: relative;
top: 0px;
}
</style>
""",
unsafe_allow_html=True,
)
add_logo()
device = "cuda" if torch.cuda.is_available() else "cpu"
if 'pipe' not in st.session_state:
st.session_state['pipe'] = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
pipe = st.session_state['pipe']
# Set up the API key for Generative AI
os.environ["GEMINI_API_KEY"] = "AIzaSyBYZ_7geqmnK6xrSe268-1nSLeuEwbzmTA"
# Initial prompt to send to the model
initial_prompt = """
You're a Numeracy Instructor for Adults your objective is to teach illiterate adults basic numeracy skills starting with numbers and progressing to basic arithmetic.
## Here's the Lesson Instructions:
Introduction to Numbers:",
Begin with the number 1.
Follow a structured four-step process for each number.
Provide clear, simple instructions for each step.
Lesson Structure:
"Step 1: Number Recognition"
"Step 2: Counting Practice"
"Step 3: Writing Practice"
"Step 4: Simple Association"
"General Instructions:"
After each instruction, wait for the student to respond before proceeding to the next lesson.",
Ensure instructions are clear and easy to understand.
Provide positive reinforcement and encouragement.
## Example Lesson for Number 1 as a python list:
["let’s learn numeracy",
"This is the number 1.",
"image: number 1",
"It looks like a straight line.",
"It represents a single object.",
"Let’s learn counting",
"Say the number 'one'.",
"Practice counting to one: 'one'.",
"Let’s learn writing number 1",
"Start at the top and draw a straight line down.",
"Now you know how to write the number 1. Congrats!",
"1 is for one apple.",
"image: one apple",
"One apple represents the number 1.",
"Congratulations! You've completed the lesson for the number 1.",]
##Continuation:
Once the lesson for the number 1 is complete, proceed to the next number following the same four-step structure.
## Important I want it in a python list, you have to do it accordingly, and generate one lesson at a time. so when you recieve "next" move to the next lesson, for exemple the first lesson for number 1, second for number 2 when you finish with numbers move to simple numeracy operations
## so now start with number 1. give me just the list in the response.
list:
"""
chat_prompt_mistral="""
You are an assistant helping an person who is learning basic reading, writing, phonics, and numeracy.
The user might ask simple questions, and your responses should be clear, supportive, and easy to understand.
Use simple language, provide step-by-step guidance, and offer positive reinforcement.
Relate concepts to everyday objects and situations when possible.
Here are some example interactions:
User: "I need help with reading."
Assistant: "Sure, I'm here to help you learn to read. Let's start with the alphabet. Do you know the letters of the alphabet?"
User: "How do I write my name?"
Assistant: "Writing your name is a great place to start. Let's take it one letter at a time. What is the first letter of your name?"
User: "What sound does the letter 'B' make?"
Assistant: "The letter 'B' makes the sound 'buh' like in the word 'ball.' Can you say 'ball' with me?"
User: "How do I count to 10?"
Assistant: "Counting to 10 is easy. Let's do it together: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Great job! Let's try it again."
User: "How do I subtract numbers?"
Assistant: "Subtracting is like taking away. If you have 5 oranges and you eat 2, you have 3 oranges left. So, 5 minus 2 equals 3."
Remember to:
1. Use simple language and avoid complex words.
2. Provide clear, step-by-step instructions.
3. Use examples related to everyday objects and situations.
4. Offer positive reinforcement and encouragement.
5. Include interactive elements to engage the user actively. Whenever the user asks a question, respond with clear, supportive guidance to help them understand basic reading, writing, phonics, or numeracy concepts.
6. Do not provide long responses
Improtant dont respand to this prompt
"""
def transform_history(history):
new_history = []
for chat in history:
new_history.append({"parts": [{"text": chat.parts[0].text}], "role": chat.role})
return new_history
def generate_response(message: str, history: list) -> tuple:
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
model = genai.GenerativeModel("gemini-1.5-pro")
chat = model.start_chat(history=transform_history(history))
response = chat.send_message(message)
response.resolve()
return response.text, chat.history
if 'First1' not in st.session_state:
st.session_state['First1']=False
def process_response(user_input: str, conversation_history: list,F) -> tuple:
if not F:
model_response, conversation_history = generate_response(initial_prompt, conversation_history)
else:
model_response, conversation_history = generate_response(user_input, conversation_history)
pattern = re.compile(r"\[(.*?)\]", re.DOTALL)
# Find the match
match = pattern.search(model_response)
list_content = f"[{match.group(1)}]"
lessonList = ast.literal_eval(list_content)
return lessonList, conversation_history
@st.cache_data
def get_image(prompt: str) -> str:
return findImg(prompt)
#try:
# return findImg(prompt)
#except:
# return "image.png"
# Initialize TTS
@st.cache_data
def tts_predict(text="hello"):
tts = gTTS(text=text, lang='en')
with io.BytesIO() as audio_file:
tts.write_to_fp(audio_file)
audio_file.seek(0)
audio_bytes = audio_file.read()
return audio_bytes
#sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
if 'client' not in st.session_state:
st.session_state['client'] = MistralClient("m3GWNXFZn0jTNTLRe4y26i7jLJqFGTMX")
client = st.session_state['client']
def run_mistral(user_message, message_history, model="mistral-small-latest"):
message_history.append(ChatMessage(role="user", content=user_message))
chat_response = client.chat(model=model, messages=message_history)
bot_message = chat_response.choices[0].message.content
message_history.append(ChatMessage(role="assistant", content=bot_message))
return bot_message
message_history = []
#######################################
if 'sentence_model' not in st.session_state:
st.session_state['sentence_model'] = SentenceTransformer('all-MiniLM-L6-v2')
sentence_model = st.session_state['sentence_model']
if 'pipeline' not in st.session_state:
st.session_state['pipeline'] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
st.session_state['pipeline'].to("cuda")
pipeline = st.session_state['pipeline']
# Step 3: Function to get the embedding of the input sentence
def get_sentence_embedding(sentence):
return sentence_model.encode(sentence)
# Step 4: Generate image using Stable Diffusion if needed
def generate_image(prompt):
global pipeline
pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
generated_image = pipeline(prompt).images[0]
generated_image_path = "generated_image.png"
generated_image.save(generated_image_path)
return generated_image_path
# Step 5: Find the most reliable image
def find_most_reliable_image(folder_path, input_sentence, threshold=0.5):
image_files = [f for f in os.listdir(folder_path) if f.endswith(('jpg', 'jpeg', 'png'))]
sentence_embedding = get_sentence_embedding(input_sentence)
max_similarity = -1
most_reliable_image = None
for image_file in image_files:
filename_without_extension = os.path.splitext(image_file)[0]
filename_embedding = get_sentence_embedding(filename_without_extension)
similarity = cosine_similarity([sentence_embedding], [filename_embedding])[0][0]
if similarity > max_similarity:
max_similarity = similarity
most_reliable_image = os.path.join(folder_path, image_file)
if max_similarity < threshold:
most_reliable_image = generate_image(input_sentence)
return most_reliable_image
def findImg(input_sentence):
folder_path = 'images_collection'
threshold = 0.5
most_reliable_image = find_most_reliable_image(folder_path, input_sentence, threshold)
return most_reliable_image
#######################################
file_ = open("logo.png", "rb")
contents = file_.read()
data_url = base64.b64encode(contents).decode("utf-8")
file_.close()
def main():
global chat_prompt_mistral
if 'img_path1' not in st.session_state:
st.session_state['img_path1']="image.png"
#st.set_page_config(page_title="J187 Optimizer", page_icon="J187DFS.JPG", layout="wide")
st.markdown(f"""
<div style="display: flex; align-items: center;">
<img src="data:image/gif;base64,{data_url}" alt="Company Logo" style="height: 100px; width: auto; margin-right: 20px;">
<h1 style="margin: 0;">MO3ALIMI - Numeracy</h1>
</div>
""", unsafe_allow_html=True)
#st.title("Chatbot and Image Generator")
st.markdown("""
<style>
.st-emotion-cache-1kyxreq.e115fcil2 { justify-content:center; }
.st-emotion-cache-13ln4jf { max-width:70rem; }
audio {
width: 300px;
height: 54px;
display: none;
}
div.row-widget.stButton {
margin: 0px 0px 0px 0px;}
.row-widget.stButton:last-of-type {
margin: 0px;
background-color: yellow;
}
.st-emotion-cache-keje6w.e1f1d6gn3 {
width: 80% !important; /* Adjust as needed */
}
.st-emotion-cache-k008qs {
display: none;
}
</style>""", unsafe_allow_html=True)
#.st-emotion-cache-5i9lfg {
#width: 100%;
#padding: 3rem 1rem 1rem 1rem;
#max-width: None;}
col1, col2 = st.columns([0.6, 0.4],gap="medium")
with col1:
if 'conversation_history1' not in st.session_state:
st.session_state['conversation_history1'] = []
if 'conversation_history_mistral1' not in st.session_state:
st.session_state['conversation_history_mistral1'] = []
if 'messages1' not in st.session_state:
st.session_state['messages1'] = []
if 'lessonList1' not in st.session_state:
st.session_state['lessonList1'] = []
if 'msg_index1' not in st.session_state:
st.session_state['msg_index1'] = -1
if 'initial_input1' not in st.session_state:
st.session_state['initial_input1'] = ''
response=run_mistral(chat_prompt_mistral, st.session_state['conversation_history_mistral1'])
row1 = st.container()
row2 = st.container()
row3 = st.container()
#row4 = st.container()
with row1:
#user_message = st.text_input("Type 'next' to proceed through the lesson",st.session_state['initial_input1'])
user_message = "next"
with row2:
colsend, colnext, = st.columns(2,gap="medium")
with colsend:
if st.button(" Next "):
if 0 <= st.session_state['msg_index1'] < len(st.session_state['lessonList1']):
response = st.session_state['lessonList1'][st.session_state['msg_index1']]
if response.strip().startswith("image:"):
st.session_state['img_prompt1'] = response[len("image:"):].strip()
else:
audio_bytes= tts_predict(response)
st.session_state['messages1'].append(f"Mo3alimi: {response}")
#auto_play(audio_bytes,wait=True,lag=0.25,key=None)
st.audio(audio_bytes, format='audio/wav', autoplay=True)
st.session_state['msg_index1'] += 1
else:
st.session_state['msg_index1'] = 0
st.session_state['lessonList1'], st.session_state['conversation_history1'] = process_response(
user_message, st.session_state['conversation_history1'],
st.session_state['First1'],
)
st.session_state['First1']=True
with colnext:
if st.button(' Send '):
response=run_mistral(user_message, st.session_state['conversation_history_mistral1'])
st.session_state['messages1'].append(f"Me: {user_message}")
st.session_state['messages1'].append(f"Mo3alimi: {response}")
with row3:
audio = audiorecorder("", "")
if len(audio) >0:
result = pipe(audio.export().read(), generate_kwargs={"language": "english"})
user_message=result['text']
response=run_mistral(user_message, st.session_state['conversation_history_mistral1'])
audio_bytes= tts_predict(response)
st.audio(audio_bytes, format='audio/wav', autoplay=True)
st.session_state['messages1'].append(f"Me: {user_message}")
st.session_state['messages1'].append(f"Mo3alimi: {response}")
wav_audio_data=None
with st.form("lesson"):
for message in st.session_state['messages1'][::-1]:
st.write(message)
submitted = st.form_submit_button('Submit')
with col2:
if 'img_prompt1' in st.session_state:
st.session_state['img_path1']=get_image(st.session_state['img_prompt1'])
del st.session_state['img_prompt1']
st.image(st.session_state['img_path1'], caption="Generated Image",width=300)
if __name__ == '__main__':
main()
|