File size: 33,089 Bytes
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397955
452072e
 
 
 
5fd26bb
2397955
452072e
 
 
 
 
 
 
2397955
452072e
 
 
 
 
 
 
 
 
 
 
 
 
2397955
452072e
 
 
 
 
 
 
 
 
 
 
b0a0e1a
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd26bb
2397955
452072e
 
 
2397955
452072e
 
2397955
 
452072e
 
 
5fd26bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452072e
 
 
5fd26bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b25803
ae04b9d
 
452072e
 
 
 
 
 
 
5b25803
452072e
 
5b25803
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9026ed3
 
 
 
 
452072e
 
 
 
 
 
 
 
 
9026ed3
 
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b25803
 
452072e
 
5b25803
 
452072e
 
 
 
cf77f40
 
 
 
 
 
5fd26bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9eab3
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae04b9d
9c9eab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452072e
ae04b9d
9c9eab3
452072e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd26bb
 
452072e
 
 
 
 
 
 
 
 
 
 
 
5fd26bb
 
452072e
 
 
 
ae04b9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
import re
from collections import OrderedDict
from html import escape
from pathlib import Path

import dateparser
import grobid_tei_xml
from bs4 import BeautifulSoup
from tqdm import tqdm


def get_span_start(type, title=None):
    title_ = ' title="' + title + '"' if title is not None else ""
    return '<span class="label ' + type + '"' + title_ + '>'


def get_span_end():
    return '</span>'


def get_rs_start(type):
    return '<rs type="' + type + '">'


def get_rs_end():
    return '</rs>'


def has_space_between_value_and_unit(quantity):
    return quantity['offsetEnd'] < quantity['rawUnit']['offsetStart']


def decorate_text_with_annotations(text, spans, tag="span"):
    """
        Decorate a text using spans, using two style defined by the tag:
            - "span" generated HTML like annotated text
            - "rs" generate XML like annotated text (format SuperMat)
    """
    sorted_spans = list(sorted(spans, key=lambda item: item['offset_start']))
    annotated_text = ""
    start = 0
    for span in sorted_spans:
        type = span['type'].replace("<", "").replace(">", "")
        if 'unit_type' in span and span['unit_type'] is not None:
            type = span['unit_type'].replace(" ", "_")
        annotated_text += escape(text[start: span['offset_start']])
        title = span['quantified'] if 'quantified' in span else None
        annotated_text += get_span_start(type, title) if tag == "span" else get_rs_start(type)
        annotated_text += escape(text[span['offset_start']: span['offset_end']])
        annotated_text += get_span_end() if tag == "span" else get_rs_end()

        start = span['offset_end']
    annotated_text += escape(text[start: len(text)])
    return annotated_text


def extract_quantities(client, x_all, column_text_index):
    # relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product',
    #                   "magnetic flux density", "magnetic flux"]
    # property_keywords = ['coercivity', 'remanence']

    output_data = []

    for idx, example in tqdm(enumerate(x_all), desc="extract quantities"):
        text = example[column_text_index]
        spans = GrobidQuantitiesProcessor(client).extract_quantities(text)

        data_record = {
            "id": example[0],
            "filename": example[1],
            "passage_id": example[2],
            "text": text,
            "spans": spans
        }

        output_data.append(data_record)

    return output_data


def extract_materials(client, x_all, column_text_index):
    output_data = []

    for idx, example in tqdm(enumerate(x_all), desc="extract materials"):
        text = example[column_text_index]
        spans = GrobidMaterialsProcessor(client).extract_materials(text)
        data_record = {
            "id": example[0],
            "filename": example[1],
            "passage_id": example[2],
            "text": text,
            "spans": spans
        }

        output_data.append(data_record)

    return output_data


def get_parsed_value_type(quantity):
    if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
        return quantity['parsedValue']['structure']['type']


class BaseProcessor(object):
    # def __init__(self, grobid_superconductors_client=None, grobid_quantities_client=None):
    #     self.grobid_superconductors_client = grobid_superconductors_client
    #     self.grobid_quantities_client = grobid_quantities_client

    patterns = [
        r'\d+e\d+'
    ]

    def post_process(self, text):
        output = text.replace('À', '-')
        output = output.replace('¼', '=')
        output = output.replace('þ', '+')
        output = output.replace('Â', 'x')
        output = output.replace('$', '~')
        output = output.replace('−', '-')
        output = output.replace('–', '-')

        for pattern in self.patterns:
            output = re.sub(pattern, lambda match: match.group().replace('e', '-'), output)

        return output


class GrobidProcessor(BaseProcessor):
    def __init__(self, grobid_client):
        # super().__init__()
        self.grobid_client = grobid_client

    def process_structure(self, input_path, coordinates=False):
        pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
                                                                input_path,
                                                                consolidate_header=True,
                                                                consolidate_citations=False,
                                                                segment_sentences=False,
                                                                tei_coordinates=coordinates,
                                                                include_raw_citations=False,
                                                                include_raw_affiliations=False,
                                                                generateIDs=True)

        if status != 200:
            return

        output_data = self.parse_grobid_xml(text, coordinates=coordinates)
        output_data['filename'] = Path(pdf_file).stem.replace(".tei", "")

        return output_data

    def process_single(self, input_file):
        doc = self.process_structure(input_file)

        for paragraph in doc['passages']:
            entities = self.process_single_text(paragraph['text'])
            paragraph['spans'] = entities

        return doc

    def parse_grobid_xml(self, text, coordinates=False):
        output_data = OrderedDict()

        doc_biblio = grobid_tei_xml.parse_document_xml(text)
        biblio = {
            "doi": doc_biblio.header.doi if doc_biblio.header.doi is not None else "",
            "authors": ", ".join([author.full_name for author in doc_biblio.header.authors]),
            "title": doc_biblio.header.title,
            "hash": doc_biblio.pdf_md5
        }
        try:
            year = dateparser.parse(doc_biblio.header.date).year
            biblio["publication_year"] = year
        except:
            pass

        output_data['biblio'] = biblio

        passages = []
        output_data['passages'] = passages
        # if biblio['title'] is not None and len(biblio['title']) > 0:
        #     passages.append({
        #         "text": self.post_process(biblio['title']),
        #         "type": "paragraph",
        #         "section": "<header>",
        #         "subSection": "<title>",
        #         "passage_id": "title0"
        #     })

        passage_type = "paragraph"

        if doc_biblio.abstract is not None and len(doc_biblio.abstract) > 0:
            passages.append({
                "text": self.post_process(doc_biblio.abstract),
                "type": passage_type,
                "section": "<header>",
                "subSection": "<abstract>",
                "passage_id": "abstract0",
                "coordinates": ""
            })

        soup = BeautifulSoup(text, 'xml')
        text_blocks_body = get_children_body(soup, verbose=False, use_paragraphs=True)

        use_paragraphs = True
        if not use_paragraphs:
            passages.extend([
                {
                    "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
                                                      text.parent.name != "ref" or (
                                                              text.parent.name == "ref" and text.parent.attrs[
                                                          'type'] != 'bibr'))),
                    "type": passage_type,
                    "section": "<body>",
                    "subSection": "<paragraph>",
                    "passage_id": str(paragraph_id),
                    "coordinates": paragraph['coords'] if coordinates and sentence.has_attr('coords') else ""
                }
                for paragraph_id, paragraph in enumerate(text_blocks_body) for
                sentence_id, sentence in enumerate(paragraph)
            ])
        else:
            passages.extend([
                {
                    "text": self.post_process(''.join(text for text in paragraph.find_all(text=True) if
                                                      text.parent.name != "ref" or (
                                                              text.parent.name == "ref" and text.parent.attrs[
                                                          'type'] != 'bibr'))),
                    "type": passage_type,
                    "section": "<body>",
                    "subSection": "<paragraph>",
                    "passage_id": str(paragraph_id),
                    "coordinates": paragraph['coords'] if coordinates and paragraph.has_attr('coords') else ""
                }
                for paragraph_id, paragraph in enumerate(text_blocks_body)
            ])

        text_blocks_figures = get_children_figures(soup, verbose=False)

        if not use_paragraphs:
            passages.extend([
                {
                    "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
                                                      text.parent.name != "ref" or (
                                                              text.parent.name == "ref" and text.parent.attrs[
                                                          'type'] != 'bibr'))),
                    "type": passage_type,
                    "section": "<body>",
                    "subSection": "<figure>",
                    "passage_id": str(paragraph_id) + str(sentence_id),
                    "coordinates": sentence['coords'] if coordinates and 'coords' in sentence else ""
                }
                for paragraph_id, paragraph in enumerate(text_blocks_figures) for
                sentence_id, sentence in enumerate(paragraph)
            ])
        else:
            passages.extend([
                {
                    "text": self.post_process(''.join(text for text in paragraph.find_all(text=True) if
                                                      text.parent.name != "ref" or (
                                                              text.parent.name == "ref" and text.parent.attrs[
                                                          'type'] != 'bibr'))),
                    "type": passage_type,
                    "section": "<body>",
                    "subSection": "<figure>",
                    "passage_id": str(paragraph_id),
                    "coordinates": paragraph['coords'] if coordinates and paragraph.has_attr('coords') else ""
                }
                for paragraph_id, paragraph in enumerate(text_blocks_figures)
            ])

        return output_data


class GrobidQuantitiesProcessor(BaseProcessor):
    def __init__(self, grobid_quantities_client):
        self.grobid_quantities_client = grobid_quantities_client

    def extract_quantities(self, text):
        status, result = self.grobid_quantities_client.process_text(text.strip())

        if status != 200:
            result = {}

        spans = []

        if 'measurements' in result:
            found_measurements = self.parse_measurements_output(result)

            for m in found_measurements:
                item = {
                    "text": text[m['offset_start']:m['offset_end']],
                    'offset_start': m['offset_start'],
                    'offset_end': m['offset_end']
                }

                if 'raw' in m and m['raw'] != item['text']:
                    item['text'] = m['raw']

                if 'quantified_substance' in m:
                    item['quantified'] = m['quantified_substance']

                if 'type' in m:
                    item["unit_type"] = m['type']

                item['type'] = 'property'
                # if 'raw_value' in m:
                #     item['raw_value'] = m['raw_value']

                spans.append(item)

        return spans

    @staticmethod
    def parse_measurements_output(result):
        measurements_output = []

        for measurement in result['measurements']:
            type = measurement['type']
            measurement_output_object = {}
            quantity_type = None
            has_unit = False
            parsed_value_type = None

            if 'quantified' in measurement:
                if 'normalizedName' in measurement['quantified']:
                    quantified_substance = measurement['quantified']['normalizedName']
                    measurement_output_object["quantified_substance"] = quantified_substance

            if 'measurementOffsets' in measurement:
                measurement_output_object["offset_start"] = measurement["measurementOffsets"]['start']
                measurement_output_object["offset_end"] = measurement["measurementOffsets"]['end']
            else:
                # If there are no offsets we skip the measurement
                continue

            # if 'measurementRaw' in measurement:
            #     measurement_output_object['raw_value'] = measurement['measurementRaw']

            if type == 'value':
                quantity = measurement['quantity']

                parsed_value = GrobidQuantitiesProcessor.get_parsed(quantity)
                if parsed_value:
                    measurement_output_object['parsed'] = parsed_value

                normalized_value = GrobidQuantitiesProcessor.get_normalized(quantity)
                if normalized_value:
                    measurement_output_object['normalized'] = normalized_value

                raw_value = GrobidQuantitiesProcessor.get_raw(quantity)
                if raw_value:
                    measurement_output_object['raw'] = raw_value

                if 'type' in quantity:
                    quantity_type = quantity['type']

                if 'rawUnit' in quantity:
                    has_unit = True

                parsed_value_type = get_parsed_value_type(quantity)

            elif type == 'interval':
                if 'quantityMost' in measurement:
                    quantityMost = measurement['quantityMost']
                    if 'type' in quantityMost:
                        quantity_type = quantityMost['type']

                    if 'rawUnit' in quantityMost:
                        has_unit = True

                    parsed_value_type = get_parsed_value_type(quantityMost)

                if 'quantityLeast' in measurement:
                    quantityLeast = measurement['quantityLeast']

                    if 'type' in quantityLeast:
                        quantity_type = quantityLeast['type']

                    if 'rawUnit' in quantityLeast:
                        has_unit = True

                    parsed_value_type = get_parsed_value_type(quantityLeast)

            elif type == 'listc':
                quantities = measurement['quantities']

                if 'type' in quantities[0]:
                    quantity_type = quantities[0]['type']

                if 'rawUnit' in quantities[0]:
                    has_unit = True

                parsed_value_type = get_parsed_value_type(quantities[0])

            if quantity_type is not None or has_unit:
                measurement_output_object['type'] = quantity_type

            if parsed_value_type is None or parsed_value_type not in ['ALPHABETIC', 'TIME']:
                measurements_output.append(measurement_output_object)

        return measurements_output

    @staticmethod
    def get_parsed(quantity):
        parsed_value = parsed_unit = None
        if 'parsedValue' in quantity and 'parsed' in quantity['parsedValue']:
            parsed_value = quantity['parsedValue']['parsed']
        if 'parsedUnit' in quantity and 'name' in quantity['parsedUnit']:
            parsed_unit = quantity['parsedUnit']['name']

        if parsed_value and parsed_unit:
            if has_space_between_value_and_unit(quantity):
                return str(parsed_value) + str(parsed_unit)
            else:
                return str(parsed_value) + " " + str(parsed_unit)

    @staticmethod
    def get_normalized(quantity):
        normalized_value = normalized_unit = None
        if 'normalizedQuantity' in quantity:
            normalized_value = quantity['normalizedQuantity']
        if 'normalizedUnit' in quantity and 'name' in quantity['normalizedUnit']:
            normalized_unit = quantity['normalizedUnit']['name']

        if normalized_value and normalized_unit:
            if has_space_between_value_and_unit(quantity):
                return str(normalized_value) + " " + str(normalized_unit)
            else:
                return str(normalized_value) + str(normalized_unit)

    @staticmethod
    def get_raw(quantity):
        raw_value = raw_unit = None
        if 'rawValue' in quantity:
            raw_value = quantity['rawValue']
        if 'rawUnit' in quantity and 'name' in quantity['rawUnit']:
            raw_unit = quantity['rawUnit']['name']

        if raw_value and raw_unit:
            if has_space_between_value_and_unit(quantity):
                return str(raw_value) + " " + str(raw_unit)
            else:
                return str(raw_value) + str(raw_unit)


class GrobidMaterialsProcessor(BaseProcessor):
    def __init__(self, grobid_superconductors_client):
        self.grobid_superconductors_client = grobid_superconductors_client

    def extract_materials(self, text):
        preprocessed_text = text.strip()
        status, result = self.grobid_superconductors_client.process_text(preprocessed_text,
                                                                         "processText_disable_linking")

        if status != 200:
            result = {}

        spans = []

        if 'passages' in result:
            materials = self.parse_superconductors_output(result, preprocessed_text)

            for m in materials:
                item = {"text": preprocessed_text[m['offset_start']:m['offset_end']]}

                item['offset_start'] = m['offset_start']
                item['offset_end'] = m['offset_end']

                if 'formula' in m:
                    item["formula"] = m['formula']

                item['type'] = 'material'
                item['raw_value'] = m['text']

                spans.append(item)

        return spans

    def parse_materials(self, text):
        status, result = self.grobid_superconductors_client.process_texts(text.strip(), "parseMaterials")

        if status != 200:
            result = []

        results = []
        for position_material in result:
            compositions = []
            for material in position_material:
                if 'resolvedFormulas' in material:
                    for resolved_formula in material['resolvedFormulas']:
                        if 'formulaComposition' in resolved_formula:
                            compositions.append(resolved_formula['formulaComposition'])
                elif 'formula' in material:
                    if 'formulaComposition' in material['formula']:
                        compositions.append(material['formula']['formulaComposition'])
            results.append(compositions)

        return results

    def parse_material(self, text):
        status, result = self.grobid_superconductors_client.process_text(text.strip(), "parseMaterial")

        if status != 200:
            result = []

        compositions = self.output_info(result)

        return compositions

    def output_info(self, result):
        compositions = []
        for material in result:
            if 'resolvedFormulas' in material:
                for resolved_formula in material['resolvedFormulas']:
                    if 'formulaComposition' in resolved_formula:
                        compositions.append(resolved_formula['formulaComposition'])
            elif 'formula' in material:
                if 'formulaComposition' in material['formula']:
                    compositions.append(material['formula']['formulaComposition'])
            if 'name' in material:
                compositions.append(material['name'])
        return compositions

    @staticmethod
    def parse_superconductors_output(result, original_text):
        materials = []

        for passage in result['passages']:
            sentence_offset = original_text.index(passage['text'])
            if 'spans' in passage:
                spans = passage['spans']
                for material_span in filter(lambda s: s['type'] == '<material>', spans):
                    text_ = material_span['text']

                    base_material_information = {
                        "text": text_,
                        "offset_start": sentence_offset + material_span['offset_start'],
                        'offset_end': sentence_offset + material_span['offset_end']
                    }

                    materials.append(base_material_information)

        return materials


class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, GrobidMaterialsProcessor):
    def __init__(self, grobid_client, grobid_quantities_client=None, grobid_superconductors_client=None):
        GrobidProcessor.__init__(self, grobid_client)
        self.gqp = GrobidQuantitiesProcessor(grobid_quantities_client)
        self.gmp = GrobidMaterialsProcessor(grobid_superconductors_client)

    def process_single_text(self, text):
        extracted_quantities_spans = self.gqp.extract_quantities(text)
        extracted_materials_spans = self.gmp.extract_materials(text)
        all_entities = extracted_quantities_spans + extracted_materials_spans
        entities = self.prune_overlapping_annotations(all_entities)
        return entities

    def extract_quantities(self, text):
        return self.gqp.extract_quantities(text)

    def extract_materials(self, text):
        return self.gmp.extract_materials(text)

    @staticmethod
    def box_to_dict(box, color=None, type=None):

        if box is None or box == "" or len(box) < 5:
            return {}

        item = {"page": box[0], "x": box[1], "y": box[2], "width": box[3], "height": box[4]}
        if color is not None:
            item['color'] = color

        if type:
            item['type'] = type

        return item

    @staticmethod
    def prune_overlapping_annotations(entities: list) -> list:
        # Sorting by offsets
        sorted_entities = sorted(entities, key=lambda d: d['offset_start'])

        if len(entities) <= 1:
            return sorted_entities

        to_be_removed = []

        previous = None
        first = True

        for current in sorted_entities:
            if first:
                first = False
                previous = current
                continue

            if previous['offset_start'] < current['offset_start'] \
                    and previous['offset_end'] < current['offset_end'] \
                    and (previous['offset_end'] < current['offset_start'] \
                         and not (previous['text'] == "-" and current['text'][0].isdigit())):
                previous = current
                continue

            if previous['offset_end'] < current['offset_end']:
                if current['type'] == previous['type']:
                    # Type is the same
                    if current['offset_start'] == previous['offset_end']:
                        if current['type'] == 'property':
                            if current['text'].startswith("."):
                                print(
                                    f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
                                # current entity starts with a ".", suspiciously look like a truncated value
                                to_be_removed.append(previous)
                                current['text'] = previous['text'] + current['text']
                                current['raw_value'] = current['text']
                                current['offset_start'] = previous['offset_start']
                            elif previous['text'].endswith(".") and current['text'][0].isdigit():
                                print(
                                    f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
                                # previous entity ends with ".", current entity starts with a number
                                to_be_removed.append(previous)
                                current['text'] = previous['text'] + current['text']
                                current['raw_value'] = current['text']
                                current['offset_start'] = previous['offset_start']
                            elif previous['text'].startswith("-"):
                                print(
                                    f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
                                # previous starts with a `-`, sherlock this is another truncated value
                                current['text'] = previous['text'] + current['text']
                                current['raw_value'] = current['text']
                                current['offset_start'] = previous['offset_start']
                                to_be_removed.append(previous)
                            else:
                                print("Other cases to be considered: ", previous, current)
                        else:
                            if current['text'].startswith("-"):
                                print(
                                    f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
                                # previous starts with a `-`, sherlock this is another truncated value
                                current['text'] = previous['text'] + current['text']
                                current['raw_value'] = current['text']
                                current['offset_start'] = previous['offset_start']
                                to_be_removed.append(previous)
                            else:
                                print("Other cases to be considered: ", previous, current)

                    elif previous['text'] == "-" and current['text'][0].isdigit():
                        print(
                            f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
                        # previous starts with a `-`, sherlock this is another truncated value
                        current['text'] = previous['text'] + " " * (current['offset_start'] - previous['offset_end']) + \
                                          current['text']
                        current['raw_value'] = current['text']
                        current['offset_start'] = previous['offset_start']
                        to_be_removed.append(previous)
                    else:
                        print(
                            f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")

                        # take the largest one
                        if len(previous['text']) > len(current['text']):
                            to_be_removed.append(current)
                        elif len(previous['text']) < len(current['text']):
                            to_be_removed.append(previous)
                        else:
                            to_be_removed.append(previous)
                elif current['type'] != previous['type']:
                    print(
                        f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")

                    if len(previous['text']) > len(current['text']):
                        to_be_removed.append(current)
                    elif len(previous['text']) < len(current['text']):
                        to_be_removed.append(previous)
                    else:
                        if current['type'] == "material":
                            to_be_removed.append(previous)
                        else:
                            to_be_removed.append(current)
                previous = current

            elif previous['offset_end'] > current['offset_end']:
                to_be_removed.append(current)
                # the previous goes after the current, so we keep the previous and we discard the current
            else:
                if current['type'] == "material":
                    to_be_removed.append(previous)
                else:
                    to_be_removed.append(current)
                previous = current

        new_sorted_entities = [e for e in sorted_entities if e not in to_be_removed]

        return new_sorted_entities


class XmlProcessor(BaseProcessor):
    def __init__(self, grobid_superconductors_client, grobid_quantities_client):
        super().__init__(grobid_superconductors_client, grobid_quantities_client)

    def process_structure(self, input_file):
        text = ""
        with open(input_file, encoding='utf-8') as fi:
            text = fi.read()

        output_data = self.parse_xml(text)
        output_data['filename'] = Path(input_file).stem.replace(".tei", "")

        return output_data

    def process_single(self, input_file):
        doc = self.process_structure(input_file)

        for paragraph in doc['passages']:
            entities = self.process_single_text(paragraph['text'])
            paragraph['spans'] = entities

        return doc

    def parse_xml(self, text):
        output_data = OrderedDict()
        soup = BeautifulSoup(text, 'xml')
        text_blocks_children = get_children_list_supermat(soup, verbose=False)

        passages = []
        output_data['passages'] = passages
        passages.extend([
            {
                "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
                                                  text.parent.name != "ref" or (
                                                          text.parent.name == "ref" and text.parent.attrs[
                                                      'type'] != 'bibr'))),
                "type": "paragraph",
                "section": "<body>",
                "subSection": "<paragraph>",
                "passage_id": str(paragraph_id) + str(sentence_id)
            }
            for paragraph_id, paragraph in enumerate(text_blocks_children) for
            sentence_id, sentence in enumerate(paragraph)
        ])

        return output_data


def get_children_list_supermat(soup, use_paragraphs=False, verbose=False):
    children = []

    child_name = "p" if use_paragraphs else "s"
    for child in soup.tei.children:
        if child.name == 'teiHeader':
            pass
            children.append(child.find_all("title"))
            children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
            children.extend([subchild.find_all(child_name) for subchild in child.find_all("ab", {"type": "keywords"})])
        elif child.name == 'text':
            children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])

    if verbose:
        print(str(children))

    return children


def get_children_list_grobid(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
    children = []

    child_name = "p" if use_paragraphs else "s"
    for child in soup.TEI.children:
        if child.name == 'teiHeader':
            pass
            # children.extend(child.find_all("title", attrs={"level": "a"}, limit=1))
            # children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
        elif child.name == 'text':
            children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
            children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])

    if verbose:
        print(str(children))

    return children


def get_children_body(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
    children = []
    child_name = "p" if use_paragraphs else "s"
    for child in soup.TEI.children:
        if child.name == 'text':
            children.extend(
                [subchild for subchild in child.find_all("body") for subchild in subchild.find_all(child_name)])

    if verbose:
        print(str(children))

    return children


def get_children_figures(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
    children = []
    child_name = "p" if use_paragraphs else "s"
    for child in soup.TEI.children:
        if child.name == 'text':
            children.extend(
                [subchild for subchilds in child.find_all("body") for subchild in subchilds.find_all("figDesc")])

    if verbose:
        print(str(children))

    return children