import torch from diffusers import FluxImg2ImgPipeline from PIL import Image import sys import spaces # I only test with FLUX.1-schnell @spaces.GPU def process_image(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): print("start process image process_image") if image == None: print("empty input image returned") return None pipe = FluxImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) pipe.to("cuda") generators = [] generator = torch.Generator("cuda").manual_seed(seed) generators.append(generator) # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline print(prompt) output = pipe(prompt=prompt, image=image,generator=generator,strength=strength ,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256) # TODO support mask return output.images[0] if __name__ == "__main__": #args input-image input-mask output image = Image.open(sys.argv[1]) mask = Image.open(sys.argv[2]) output = process_image(image,mask) output.save(sys.argv[3])