mrdbourke commited on
Commit
ff066c3
β€’
1 Parent(s): 8e2b2cf

update files

Browse files
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24a803b0e458a9949a7725d651f780c5c77592042d159c7dcd3e658e95e5b96d
3
  size 31273033
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49f172e8691ca003797f29f904dccfee4dd0d1aa99382313c75915a1fffa7a3b
3
  size 31273033
app.py CHANGED
@@ -1,58 +1,77 @@
 
1
  import gradio as gr
2
  import os
3
  import torch
4
 
5
  from model import create_effnetb2_model
6
  from timeit import default_timer as timer
 
7
 
8
  # Setup class names
9
  class_names = ["pizza", "steak", "sushi"]
10
 
11
- # Create model
12
- model, transforms = create_effnetb2_model(
13
- num_classes=3,
 
 
14
  )
15
 
16
  # Load saved weights
17
- model.load_state_dict(
18
  torch.load(
19
  f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
20
  map_location=torch.device("cpu"), # load to CPU
21
  )
22
  )
23
 
24
- # Create prediction code
25
- def predict(img):
 
 
 
 
 
26
  start_time = timer()
27
- img = transforms(img).unsqueeze(0)
28
- model.eval()
 
 
 
 
29
  with torch.inference_mode():
30
- pred_probs = torch.softmax(model(img), dim=1)
31
- pred_labels_and_probs = {
32
- class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
33
- }
 
 
 
34
  pred_time = round(timer() - start_time, 5)
 
 
35
  return pred_labels_and_probs, pred_time
36
 
 
37
 
38
- # Create Gradio app
39
  title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
40
  description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
41
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
42
- example_dir = "demo/examples"
43
-
44
- demo = gr.Interface(
45
- fn=predict,
46
- inputs=gr.Image(type="pil"),
47
- outputs=[
48
- gr.Label(num_top_classes=3, label="Predictions"),
49
- gr.Number(label="Prediction time (s)"),
50
- ],
51
- examples=[["examples/" + example] for example in os.listdir("examples")],
52
- interpretation="default",
53
- title=title,
54
- description=description,
55
- article=article,
56
- )
57
 
58
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
  import gradio as gr
3
  import os
4
  import torch
5
 
6
  from model import create_effnetb2_model
7
  from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
 
10
  # Setup class names
11
  class_names = ["pizza", "steak", "sushi"]
12
 
13
+ ### 2. Model and transforms preparation ###
14
+
15
+ # Create EffNetB2 model
16
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
17
+ num_classes=3, # len(class_names) would also work
18
  )
19
 
20
  # Load saved weights
21
+ effnetb2.load_state_dict(
22
  torch.load(
23
  f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
24
  map_location=torch.device("cpu"), # load to CPU
25
  )
26
  )
27
 
28
+ ### 3. Predict function ###
29
+
30
+ # Create predict function
31
+ def predict(img) -> Tuple[Dict, float]:
32
+ """Transforms and performs a prediction on img and returns prediction and time taken.
33
+ """
34
+ # Start the timer
35
  start_time = timer()
36
+
37
+ # Transform the target image and add a batch dimension
38
+ img = effnetb2_transforms(img).unsqueeze(0)
39
+
40
+ # Put model into evaluation mode and turn on inference mode
41
+ effnetb2.eval()
42
  with torch.inference_mode():
43
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
44
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
45
+
46
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
47
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
48
+
49
+ # Calculate the prediction time
50
  pred_time = round(timer() - start_time, 5)
51
+
52
+ # Return the prediction dictionary and prediction time
53
  return pred_labels_and_probs, pred_time
54
 
55
+ ### 4. Gradio app ###
56
 
57
+ # Create title, description and article strings
58
  title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
59
  description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
60
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ # Create examples list from "examples/" directory
63
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
64
+
65
+ # Create the Gradio demo
66
+ demo = gr.Interface(fn=predict, # mapping function from input to output
67
+ inputs=gr.Image(type="pil"), # what are the inputs?
68
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
69
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
70
+ # Create examples list from "examples/" directory
71
+ examples=example_list,
72
+ title=title,
73
+ description=description,
74
+ article=article)
75
+
76
+ # Launch the demo!
77
+ demo.launch()
model.py CHANGED
@@ -1,20 +1,36 @@
 
1
  import torchvision
2
 
3
  from torch import nn
4
 
5
 
6
- def create_effnetb2_model(num_classes: int):
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
8
  transforms = weights.transforms()
9
  model = torchvision.models.efficientnet_b2(weights=weights)
10
 
11
- # Freeze base model
12
  for param in model.parameters():
13
  param.requires_grad = False
14
 
15
- # Change classifier head
 
16
  model.classifier = nn.Sequential(
17
  nn.Dropout(p=0.3, inplace=True),
18
  nn.Linear(in_features=1408, out_features=num_classes),
19
  )
20
- return model, transforms
 
 
1
+ import torch
2
  import torchvision
3
 
4
  from torch import nn
5
 
6
 
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 image transforms.
19
+ """
20
+ # Create EffNetB2 pretrained weights, transforms and model
21
  weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
22
  transforms = weights.transforms()
23
  model = torchvision.models.efficientnet_b2(weights=weights)
24
 
25
+ # Freeze all layers in base model
26
  for param in model.parameters():
27
  param.requires_grad = False
28
 
29
+ # Change classifier head with random seed for reproducibility
30
+ torch.manual_seed(seed)
31
  model.classifier = nn.Sequential(
32
  nn.Dropout(p=0.3, inplace=True),
33
  nn.Linear(in_features=1408, out_features=num_classes),
34
  )
35
+
36
+ return model, transforms
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
  torch==1.12.0
2
  torchvision==0.13.0
3
- gradio==3.1.4
 
1
  torch==1.12.0
2
  torchvision==0.13.0
3
+ gradio==3.1.4