File size: 28,287 Bytes
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
 
70988bd
 
 
 
 
 
 
 
 
 
 
d63394d
 
 
 
 
 
 
70988bd
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f3692
d63394d
 
 
 
 
 
70988bd
 
d63394d
 
 
 
 
 
 
 
 
 
70988bd
d63394d
c6f3692
70988bd
d63394d
 
 
 
 
 
70988bd
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
 
 
 
d63394d
70988bd
d63394d
70988bd
 
 
d63394d
 
 
70988bd
 
 
 
 
 
 
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
 
d63394d
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
 
 
70988bd
 
d63394d
70988bd
 
 
 
 
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
 
 
 
d63394d
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
70988bd
 
 
 
 
 
 
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
 
70988bd
 
 
 
 
d63394d
 
 
 
70988bd
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
70988bd
d63394d
 
70988bd
d63394d
 
 
 
 
 
 
 
70988bd
 
d63394d
 
 
 
 
 
70988bd
 
 
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f3692
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70988bd
d63394d
70988bd
d63394d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f3692
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import os,sys

from transformers import pipeline
import gradio as gr
import torch
import click
import torchaudio
from glob import glob
import librosa
import numpy as np
from scipy.io import wavfile
import shutil
import time

import json
from model.utils import convert_char_to_pinyin
import signal
import psutil
import platform
import subprocess
from datasets.arrow_writer import ArrowWriter

import json

training_process = None    
system = platform.system()
python_executable = sys.executable or "python"

path_data="data"

device = (
"cuda"
    if torch.cuda.is_available()
    else "mps" if torch.backends.mps.is_available() else "cpu"
)

pipe = None

# Load metadata
def get_audio_duration(audio_path):
    """Calculate the duration of an audio file."""
    audio, sample_rate = torchaudio.load(audio_path)
    num_channels = audio.shape[0]  
    return audio.shape[1] / (sample_rate * num_channels)

def clear_text(text):
    """Clean and prepare text by lowering the case and stripping whitespace."""
    return text.lower().strip()

def get_rms(y,frame_length=2048,hop_length=512,pad_mode="constant",): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
    padding = (int(frame_length // 2), int(frame_length // 2))
    y = np.pad(y, padding, mode=pad_mode)

    axis = -1
    # put our new within-frame axis at the end for now
    out_strides = y.strides + tuple([y.strides[axis]])
    # Reduce the shape on the framing axis
    x_shape_trimmed = list(y.shape)
    x_shape_trimmed[axis] -= frame_length - 1
    out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
    xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
    if axis < 0:
        target_axis = axis - 1
    else:
        target_axis = axis + 1
    xw = np.moveaxis(xw, -1, target_axis)
    # Downsample along the target axis
    slices = [slice(None)] * xw.ndim
    slices[axis] = slice(0, None, hop_length)
    x = xw[tuple(slices)]

    # Calculate power
    power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)

    return np.sqrt(power)

class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
    def __init__(

        self,

        sr: int,

        threshold: float = -40.0,

        min_length: int = 2000,

        min_interval: int = 300,

        hop_size: int = 20,

        max_sil_kept: int = 2000,

    ):
        if not min_length >= min_interval >= hop_size:
            raise ValueError(
                "The following condition must be satisfied: min_length >= min_interval >= hop_size"
            )
        if not max_sil_kept >= hop_size:
            raise ValueError(
                "The following condition must be satisfied: max_sil_kept >= hop_size"
            )
        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.0)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[
                :, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
            ]
        else:
            return waveform[
                begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
            ]

    # @timeit
    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = waveform.mean(axis=0)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            return [waveform]
        rms_list = get_rms(
            y=samples, frame_length=self.win_size, hop_length=self.hop_size
        ).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            # Keep looping while frame is silent.
            if rms < self.threshold:
                # Record start of silent frames.
                if silence_start is None:
                    silence_start = i
                continue
            # Keep looping while frame is not silent and silence start has not been recorded.
            if silence_start is None:
                continue
            # Clear recorded silence start if interval is not enough or clip is too short
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = (
                i - silence_start >= self.min_interval
                and i - clip_start >= self.min_length
            )
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            # Need slicing. Record the range of silent frames to be removed.
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start : i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[
                    i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
                ].argmin()
                pos += i - self.max_sil_kept
                pos_l = (
                    rms_list[
                        silence_start : silence_start + self.max_sil_kept + 1
                    ].argmin()
                    + silence_start
                )
                pos_r = (
                    rms_list[i - self.max_sil_kept : i + 1].argmin()
                    + i
                    - self.max_sil_kept
                )
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = (
                    rms_list[
                        silence_start : silence_start + self.max_sil_kept + 1
                    ].argmin()
                    + silence_start
                )
                pos_r = (
                    rms_list[i - self.max_sil_kept : i + 1].argmin()
                    + i
                    - self.max_sil_kept
                )
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        # Deal with trailing silence.
        total_frames = rms_list.shape[0]
        if (
            silence_start is not None
            and total_frames - silence_start >= self.min_interval
        ):
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        # Apply and return slices.
        ####ιŸ³ι’‘+衷始既间+η»ˆζ­’ζ—Άι—΄
        if len(sil_tags) == 0:
            return [[waveform,0,int(total_frames*self.hop_size)]]
        else:
            chunks = []
            if sil_tags[0][0] > 0:
                chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]),0,int(sil_tags[0][0]*self.hop_size)])
            for i in range(len(sil_tags) - 1):
                chunks.append(
                    [self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),int(sil_tags[i][1]*self.hop_size),int(sil_tags[i + 1][0]*self.hop_size)]
                )
            if sil_tags[-1][1] < total_frames:
                chunks.append(
                    [self._apply_slice(waveform, sil_tags[-1][1], total_frames),int(sil_tags[-1][1]*self.hop_size),int(total_frames*self.hop_size)]
                )
            return chunks

#terminal
def terminate_process_tree(pid, including_parent=True):  
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        # Process already terminated
        return

    children = parent.children(recursive=True)
    for child in children:
        try:
            os.kill(child.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass
    if including_parent:
        try:
            os.kill(parent.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass

def terminate_process(pid):
    if system == "Windows":
        cmd = f"taskkill /t /f /pid {pid}"
        os.system(cmd)
    else:
        terminate_process_tree(pid)

def start_training(dataset_name="",     

    exp_name="F5TTS_Base",            

    learning_rate=1e-4,               

    batch_size_per_gpu=400,           

    batch_size_type="frame",          

    max_samples=64,                   

    grad_accumulation_steps=1,        

    max_grad_norm=1.0,                

    epochs=11,                        

    num_warmup_updates=200,           

    save_per_updates=400,             

    last_per_steps=800,               

    finetune=True,                    

    ):


    global training_process

    path_project = os.path.join(path_data, dataset_name + "_pinyin")

    if os.path.isdir(path_project)==False:
        yield f"There is not project with name {dataset_name}",gr.update(interactive=True),gr.update(interactive=False)
        return

    file_raw = os.path.join(path_project,"raw.arrow")
    if os.path.isfile(file_raw)==False:
       yield f"There is no file {file_raw}",gr.update(interactive=True),gr.update(interactive=False)
       return    

    # Check if a training process is already running
    if training_process is not None:
        return "Train run already!",gr.update(interactive=False),gr.update(interactive=True)

    yield "start train",gr.update(interactive=False),gr.update(interactive=False)

    # Command to run the training script with the specified arguments
    cmd = f"accelerate launch finetune-cli.py --exp_name {exp_name} " \
          f"--learning_rate {learning_rate} " \
          f"--batch_size_per_gpu {batch_size_per_gpu} " \
          f"--batch_size_type {batch_size_type} " \
          f"--max_samples {max_samples} " \
          f"--grad_accumulation_steps {grad_accumulation_steps} " \
          f"--max_grad_norm {max_grad_norm} " \
          f"--epochs {epochs} " \
          f"--num_warmup_updates {num_warmup_updates} " \
          f"--save_per_updates {save_per_updates} " \
          f"--last_per_steps {last_per_steps} " \
          f"--dataset_name {dataset_name}"  
    if finetune:cmd += f" --finetune {finetune}"   
    print(cmd)      
    try:
      # Start the training process
      training_process = subprocess.Popen(cmd, shell=True)

      time.sleep(5) 
      yield "check terminal for wandb",gr.update(interactive=False),gr.update(interactive=True) 
      
      # Wait for the training process to finish
      training_process.wait()
      time.sleep(1)
      
      if training_process is None: 
         text_info = 'train stop'
      else:     
         text_info = "train complete !"

    except Exception as e:  # Catch all exceptions
        # Ensure that we reset the training process variable in case of an error
        text_info=f"An error occurred: {str(e)}"
    
    training_process=None

    yield text_info,gr.update(interactive=True),gr.update(interactive=False)

def stop_training():
    global training_process
    if training_process is None:return f"Train not run !",gr.update(interactive=True),gr.update(interactive=False)
    terminate_process_tree(training_process.pid)
    training_process = None
    return 'train stop',gr.update(interactive=True),gr.update(interactive=False)

def create_data_project(name):
    name+="_pinyin"
    os.makedirs(os.path.join(path_data,name),exist_ok=True)
    os.makedirs(os.path.join(path_data,name,"dataset"),exist_ok=True)
    
def transcribe(file_audio,language="english"):
    global pipe

    if pipe is None:
       pipe = pipeline("automatic-speech-recognition",model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16,device=device)

    text_transcribe = pipe(
        file_audio,
        chunk_length_s=30,
        batch_size=128,
        generate_kwargs={"task": "transcribe","language": language},
        return_timestamps=False,
    )["text"].strip()
    return text_transcribe

def transcribe_all(name_project,audio_files,language,user=False,progress=gr.Progress()):
    name_project+="_pinyin"
    path_project= os.path.join(path_data,name_project)
    path_dataset = os.path.join(path_project,"dataset")
    path_project_wavs = os.path.join(path_project,"wavs")
    file_metadata = os.path.join(path_project,"metadata.csv")

    if audio_files is None:return "You need to load an audio file."

    if os.path.isdir(path_project_wavs):
       shutil.rmtree(path_project_wavs)

    if os.path.isfile(file_metadata):
       os.remove(file_metadata)

    os.makedirs(path_project_wavs,exist_ok=True)
    
    if user:
       file_audios = [file for format in ('*.wav', '*.ogg', '*.opus', '*.mp3', '*.flac') for file in glob(os.path.join(path_dataset, format))]
       if file_audios==[]:return "No audio file was found in the dataset."
    else:
       file_audios = audio_files
       

    alpha = 0.5
    _max = 1.0
    slicer = Slicer(24000)

    num = 0
    error_num = 0
    data=""
    for file_audio in progress.tqdm(file_audios, desc="transcribe files",total=len((file_audios))):
        
        audio, _ = librosa.load(file_audio, sr=24000, mono=True) 

        list_slicer=slicer.slice(audio)
        for chunk, start, end in progress.tqdm(list_slicer,total=len(list_slicer), desc="slicer files"): 
            
            name_segment = os.path.join(f"segment_{num}")
            file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")    
            
            tmp_max = np.abs(chunk).max()
            if(tmp_max>1):chunk/=tmp_max
            chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
            wavfile.write(file_segment,24000, (chunk * 32767).astype(np.int16))
            
            try:
               text=transcribe(file_segment,language)
               text = text.lower().strip().replace('"',"")

               data+= f"{name_segment}|{text}\n"

               num+=1
            except:
               error_num +=1

    with open(file_metadata,"w",encoding="utf-8") as f:
        f.write(data)
    
    if error_num!=[]:
       error_text=f"\nerror files : {error_num}"    
    else:
       error_text=""
       
    return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"

def format_seconds_to_hms(seconds):
    hours = int(seconds / 3600)
    minutes = int((seconds % 3600) / 60)
    seconds = seconds % 60
    return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))

def create_metadata(name_project,progress=gr.Progress()):
    name_project+="_pinyin"
    path_project= os.path.join(path_data,name_project)
    path_project_wavs = os.path.join(path_project,"wavs")
    file_metadata = os.path.join(path_project,"metadata.csv")
    file_raw = os.path.join(path_project,"raw.arrow")
    file_duration = os.path.join(path_project,"duration.json")
    file_vocab = os.path.join(path_project,"vocab.txt")

    if os.path.isfile(file_metadata)==False: return "The file was not found in " + file_metadata 
    
    with open(file_metadata,"r",encoding="utf-8") as f:
        data=f.read()
    
    audio_path_list=[]
    text_list=[]
    duration_list=[]
    
    count=data.split("\n")
    lenght=0
    result=[]
    error_files=[]
    for line in progress.tqdm(data.split("\n"),total=count):
        sp_line=line.split("|")
        if len(sp_line)!=2:continue
        name_audio,text = sp_line[:2]

        file_audio = os.path.join(path_project_wavs, name_audio + ".wav")

        if os.path.isfile(file_audio)==False:
            error_files.append(file_audio)
            continue

        duraction = get_audio_duration(file_audio)
        if duraction<2 and duraction>15:continue
        if len(text)<4:continue

        text = clear_text(text)
        text = convert_char_to_pinyin([text], polyphone = True)[0]

        audio_path_list.append(file_audio)
        duration_list.append(duraction)
        text_list.append(text)
      
        result.append({"audio_path": file_audio, "text": text, "duration": duraction})

        lenght+=duraction

    if duration_list==[]:
        error_files_text="\n".join(error_files)
        return f"Error: No audio files found in the specified path : \n{error_files_text}"
    
    min_second = round(min(duration_list),2)   
    max_second = round(max(duration_list),2)

    with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
        for line in progress.tqdm(result,total=len(result), desc=f"prepare data"):
            writer.write(line)

    with open(file_duration, 'w', encoding='utf-8') as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)
 
    file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"    
    if os.path.isfile(file_vocab_finetune==False):return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
    shutil.copy2(file_vocab_finetune, file_vocab)
    
    if error_files!=[]:
       error_text="error files\n" + "\n".join(error_files)
    else:
       error_text=""
        
    return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}"

def check_user(value):
    return gr.update(visible=not value),gr.update(visible=value)

def calculate_train(name_project,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,finetune):
    name_project+="_pinyin"
    path_project= os.path.join(path_data,name_project)
    file_duraction = os.path.join(path_project,"duration.json")

    with open(file_duraction, 'r') as file:
        data = json.load(file)  
    
    duration_list = data['duration']

    samples = len(duration_list)

    if torch.cuda.is_available():
        gpu_properties = torch.cuda.get_device_properties(0)
        total_memory = gpu_properties.total_memory / (1024 ** 3)  
    elif torch.backends.mps.is_available():
        total_memory = psutil.virtual_memory().available / (1024 ** 3)
    
    if batch_size_type=="frame":
       batch = int(total_memory * 0.5)
       batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
       batch_size_per_gpu = int(38400 / batch )
    else:
       batch_size_per_gpu = int(total_memory / 8)   
       batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
       batch = batch_size_per_gpu

    if batch_size_per_gpu<=0:batch_size_per_gpu=1

    if samples<64:
       max_samples = int(samples * 0.25) 
    
    num_warmup_updates = int(samples * 0.10) 
    save_per_updates = int(samples * 0.25) 
    last_per_steps =int(save_per_updates * 5)
    
    max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
    num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
    save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
    last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)

    if finetune:learning_rate=1e-4
    else:learning_rate=7.5e-5

    return batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,samples,learning_rate

def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
    try:
        checkpoint = torch.load(checkpoint_path)
        print("Original Checkpoint Keys:", checkpoint.keys())
        
        ema_model_state_dict = checkpoint.get('ema_model_state_dict', None)

        if ema_model_state_dict is not None:
            new_checkpoint = {'ema_model_state_dict': ema_model_state_dict}
            torch.save(new_checkpoint, new_checkpoint_path)
            return f"New checkpoint saved at: {new_checkpoint_path}"
        else:
            return "No 'ema_model_state_dict' found in the checkpoint."

    except Exception as e:
        return f"An error occurred: {e}"

def vocab_check(project_name):
    name_project = project_name + "_pinyin"
    path_project = os.path.join(path_data, name_project)

    file_metadata = os.path.join(path_project, "metadata.csv")
   
    file_vocab="data/Emilia_ZH_EN_pinyin/vocab.txt"
    if os.path.isfile(file_vocab)==False:
        return f"the file {file_vocab} not found !"
    
    with open(file_vocab,"r",encoding="utf-8") as f:
         data=f.read()

    vocab = data.split("\n")

    if os.path.isfile(file_metadata)==False:
        return f"the file {file_metadata} not found !"

    with open(file_metadata,"r",encoding="utf-8") as f:
         data=f.read()

    miss_symbols=[]
    miss_symbols_keep={}
    for item in data.split("\n"):
         sp=item.split("|")
         if len(sp)!=2:continue
         text=sp[1].lower().strip()

         for t in text:
             if (t in vocab)==False and (t in miss_symbols_keep)==False:
                miss_symbols.append(t) 
                miss_symbols_keep[t]=t

            
    if miss_symbols==[]:info ="You can train using your language !"     
    else:info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)   

    return info



with gr.Blocks() as app:

    with gr.Row():
         project_name=gr.Textbox(label="project name",value="my_speak")
         bt_create=gr.Button("create new project")
    
    bt_create.click(fn=create_data_project,inputs=[project_name])

    with gr.Tabs():
         

         with gr.TabItem("transcribe Data"):


              ch_manual = gr.Checkbox(label="user",value=False)

              mark_info_transcribe=gr.Markdown(
                         """```plaintext    

     Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. 

                 

     my_speak/

     β”‚

     └── dataset/

         β”œβ”€β”€ audio1.wav

         └── audio2.wav

         ...

     ```""",visible=False)

              audio_speaker = gr.File(label="voice",type="filepath",file_count="multiple")
              txt_lang = gr.Text(label="Language",value="english")
              bt_transcribe=bt_create=gr.Button("transcribe")
              txt_info_transcribe=gr.Text(label="info",value="")
              bt_transcribe.click(fn=transcribe_all,inputs=[project_name,audio_speaker,txt_lang,ch_manual],outputs=[txt_info_transcribe])
              ch_manual.change(fn=check_user,inputs=[ch_manual],outputs=[audio_speaker,mark_info_transcribe])
         
         with gr.TabItem("prepare Data"):
              gr.Markdown(
                         """```plaintext    

     place all your wavs folder and your metadata.csv file in {your name project}                                 

     my_speak/

     β”‚

     β”œβ”€β”€ wavs/

     β”‚   β”œβ”€β”€ audio1.wav

     β”‚   └── audio2.wav

     |   ...

     β”‚

     └── metadata.csv

      

     file format metadata.csv



     audio1|text1

     audio2|text1

     ...



     ```""")

              bt_prepare=bt_create=gr.Button("prepare")
              txt_info_prepare=gr.Text(label="info",value="")
              bt_prepare.click(fn=create_metadata,inputs=[project_name],outputs=[txt_info_prepare])
         
         with gr.TabItem("train Data"):
              
              with gr.Row():    
                   bt_calculate=bt_create=gr.Button("Auto Settings") 
                   ch_finetune=bt_create=gr.Checkbox(label="finetune",value=True)   
                   lb_samples = gr.Label(label="samples")  
                   batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")  
                
              with gr.Row():     
                   exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
                   learning_rate = gr.Number(label="Learning Rate", value=1e-4, step=1e-4)
                   
              with gr.Row():
                   batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
                   max_samples = gr.Number(label="Max Samples", value=16)
                   
              with gr.Row():
                   grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
                   max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
                   
              with gr.Row():
                   epochs = gr.Number(label="Epochs", value=10)
                   num_warmup_updates = gr.Number(label="Warmup Updates", value=5)

              with gr.Row():     
                   save_per_updates = gr.Number(label="Save per Updates", value=10)
                   last_per_steps = gr.Number(label="Last per Steps", value=50)
       
              with gr.Row():
                   start_button = gr.Button("Start Training")
                   stop_button = gr.Button("Stop Training",interactive=False)
         
              txt_info_train=gr.Text(label="info",value="")
              start_button.click(fn=start_training,inputs=[project_name,exp_name,learning_rate,batch_size_per_gpu,batch_size_type,max_samples,grad_accumulation_steps,max_grad_norm,epochs,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[txt_info_train,start_button,stop_button])
              stop_button.click(fn=stop_training,outputs=[txt_info_train,start_button,stop_button])
              bt_calculate.click(fn=calculate_train,inputs=[project_name,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,lb_samples,learning_rate]) 
         
         with gr.TabItem("reduse checkpoint"):
              txt_path_checkpoint = gr.Text(label="path checkpoint :") 
              txt_path_checkpoint_small = gr.Text(label="path output :") 
              txt_info_reduse = gr.Text(label="info",value="")
              reduse_button = gr.Button("reduse") 
              reduse_button.click(fn=extract_and_save_ema_model,inputs=[txt_path_checkpoint,txt_path_checkpoint_small],outputs=[txt_info_reduse])

         with gr.TabItem("vocab check experiment"):
              check_button = gr.Button("check vocab") 
              txt_info_check=gr.Text(label="info",value="")
              check_button.click(fn=vocab_check,inputs=[project_name],outputs=[txt_info_check])
       

@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(

    "--share",

    "-s",

    default=False,

    is_flag=True,

    help="Share the app via Gradio share link",

)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
    global app
    print(f"Starting app...")
    app.queue(api_open=api).launch(
        server_name=host, server_port=port, share=share, show_api=api
    )

if __name__ == "__main__":
    main()