Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from model import CFM, UNetT, DiT, MMDiT, Trainer | |
from model.utils import get_tokenizer | |
from model.dataset import load_dataset | |
from cached_path import cached_path | |
import shutil,os | |
# -------------------------- Dataset Settings --------------------------- # | |
target_sample_rate = 24000 | |
n_mel_channels = 100 | |
hop_length = 256 | |
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' | |
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) | |
# -------------------------- Argument Parsing --------------------------- # | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train CFM Model') | |
parser.add_argument('--exp_name', type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"],help='Experiment name') | |
parser.add_argument('--dataset_name', type=str, default="Emilia_ZH_EN", help='Name of the dataset to use') | |
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for training') | |
parser.add_argument('--batch_size_per_gpu', type=int, default=256, help='Batch size per GPU') | |
parser.add_argument('--batch_size_type', type=str, default="frame", choices=["frame", "sample"],help='Batch size type') | |
parser.add_argument('--max_samples', type=int, default=16, help='Max sequences per batch') | |
parser.add_argument('--grad_accumulation_steps', type=int, default=1,help='Gradient accumulation steps') | |
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping') | |
parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs') | |
parser.add_argument('--num_warmup_updates', type=int, default=5, help='Warmup steps') | |
parser.add_argument('--save_per_updates', type=int, default=10, help='Save checkpoint every X steps') | |
parser.add_argument('--last_per_steps', type=int, default=10, help='Save last checkpoint every X steps') | |
return parser.parse_args() | |
# -------------------------- Training Settings -------------------------- # | |
def main(): | |
args = parse_args() | |
# Model parameters based on experiment name | |
if args.exp_name == "F5TTS_Base": | |
wandb_resume_id = None | |
model_cls = DiT | |
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) | |
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt")) | |
elif args.exp_name == "E2TTS_Base": | |
wandb_resume_id = None | |
model_cls = UNetT | |
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) | |
ckpt_path = str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt")) | |
path_ckpt = os.path.join("ckpts",args.dataset_name) | |
if os.path.isdir(path_ckpt)==False: | |
os.makedirs(path_ckpt,exist_ok=True) | |
shutil.copy2(ckpt_path,os.path.join(path_ckpt,os.path.basename(ckpt_path))) | |
checkpoint_path=os.path.join("ckpts",args.dataset_name) | |
# Use the dataset_name provided in the command line | |
tokenizer_path = args.dataset_name if tokenizer != "custom" else tokenizer_path | |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
mel_spec_kwargs = dict( | |
target_sample_rate=target_sample_rate, | |
n_mel_channels=n_mel_channels, | |
hop_length=hop_length, | |
) | |
e2tts = CFM( | |
transformer=model_cls( | |
**model_cfg, | |
text_num_embeds=vocab_size, | |
mel_dim=n_mel_channels | |
), | |
mel_spec_kwargs=mel_spec_kwargs, | |
vocab_char_map=vocab_char_map, | |
) | |
trainer = Trainer( | |
e2tts, | |
args.epochs, | |
args.learning_rate, | |
num_warmup_updates=args.num_warmup_updates, | |
save_per_updates=args.save_per_updates, | |
checkpoint_path=checkpoint_path, | |
batch_size=args.batch_size_per_gpu, | |
batch_size_type=args.batch_size_type, | |
max_samples=args.max_samples, | |
grad_accumulation_steps=args.grad_accumulation_steps, | |
max_grad_norm=args.max_grad_norm, | |
wandb_project="CFM-TTS", | |
wandb_run_name=args.exp_name, | |
wandb_resume_id=wandb_resume_id, | |
last_per_steps=args.last_per_steps, | |
) | |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) | |
trainer.train(train_dataset, | |
resumable_with_seed=666 # seed for shuffling dataset | |
) | |
if __name__ == '__main__': | |
main() | |