""" ein notation: b - batch n - sequence nt - text sequence nw - raw wave length d - dimension """ from __future__ import annotations from typing import Optional import math import torch from torch import nn import torch.nn.functional as F import torchaudio from einops import rearrange from x_transformers.x_transformers import apply_rotary_pos_emb # raw wav to mel spec class MelSpec(nn.Module): def __init__( self, filter_length = 1024, hop_length = 256, win_length = 1024, n_mel_channels = 100, target_sample_rate = 24_000, normalize = False, power = 1, norm = None, center = True, ): super().__init__() self.n_mel_channels = n_mel_channels self.mel_stft = torchaudio.transforms.MelSpectrogram( sample_rate = target_sample_rate, n_fft = filter_length, win_length = win_length, hop_length = hop_length, n_mels = n_mel_channels, power = power, center = center, normalized = normalize, norm = norm, ) self.register_buffer('dummy', torch.tensor(0), persistent = False) def forward(self, inp): if len(inp.shape) == 3: inp = rearrange(inp, 'b 1 nw -> b nw') assert len(inp.shape) == 2 if self.dummy.device != inp.device: self.to(inp.device) mel = self.mel_stft(inp) mel = mel.clamp(min = 1e-5).log() return mel # sinusoidal position embedding class SinusPositionEmbedding(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x, scale=1000): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb # convolutional position embedding class ConvPositionEmbedding(nn.Module): def __init__(self, dim, kernel_size = 31, groups = 16): super().__init__() assert kernel_size % 2 != 0 self.conv1d = nn.Sequential( nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2), nn.Mish(), nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2), nn.Mish(), ) def forward(self, x: float['b n d'], mask: bool['b n'] | None = None): if mask is not None: mask = mask[..., None] x = x.masked_fill(~mask, 0.) x = rearrange(x, 'b n d -> b d n') x = self.conv1d(x) out = rearrange(x, 'b d n -> b n d') if mask is not None: out = out.masked_fill(~mask, 0.) return out # rotary positional embedding related def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.): # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ # https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py theta *= theta_rescale_factor ** (dim / (dim - 2)) freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) # type: ignore freqs = torch.outer(t, freqs).float() # type: ignore freqs_cos = torch.cos(freqs) # real part freqs_sin = torch.sin(freqs) # imaginary part return torch.cat([freqs_cos, freqs_sin], dim=-1) def get_pos_embed_indices(start, length, max_pos, scale=1.): # length = length if isinstance(length, int) else length.max() scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar pos = start.unsqueeze(1) + ( torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long() # avoid extra long error. pos = torch.where(pos < max_pos, pos, max_pos - 1) return pos # Global Response Normalization layer (Instance Normalization ?) class GRN(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, dim)) def forward(self, x): Gx = torch.norm(x, p=2, dim=1, keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * Nx) + self.beta + x # ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py # ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108 class ConvNeXtV2Block(nn.Module): def __init__( self, dim: int, intermediate_dim: int, dilation: int = 1, ): super().__init__() padding = (dilation * (7 - 1)) // 2 self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation) # depthwise conv self.norm = nn.LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.grn = GRN(intermediate_dim) self.pwconv2 = nn.Linear(intermediate_dim, dim) def forward(self, x: torch.Tensor) -> torch.Tensor: residual = x x = x.transpose(1, 2) # b n d -> b d n x = self.dwconv(x) x = x.transpose(1, 2) # b d n -> b n d x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) return residual + x # AdaLayerNormZero # return with modulated x for attn input, and params for later mlp modulation class AdaLayerNormZero(nn.Module): def __init__(self, dim): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(dim, dim * 6) self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) def forward(self, x, emb = None): emb = self.linear(self.silu(emb)) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp # AdaLayerNormZero for final layer # return only with modulated x for attn input, cuz no more mlp modulation class AdaLayerNormZero_Final(nn.Module): def __init__(self, dim): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(dim, dim * 2) self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) def forward(self, x, emb): emb = self.linear(self.silu(emb)) scale, shift = torch.chunk(emb, 2, dim=1) x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] return x # FeedForward class FeedForward(nn.Module): def __init__(self, dim, dim_out = None, mult = 4, dropout = 0., approximate: str = 'none'): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim activation = nn.GELU(approximate=approximate) project_in = nn.Sequential( nn.Linear(dim, inner_dim), activation ) self.ff = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.ff(x) # Attention with possible joint part # modified from diffusers/src/diffusers/models/attention_processor.py class Attention(nn.Module): def __init__( self, processor: JointAttnProcessor | AttnProcessor, dim: int, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, context_dim: Optional[int] = None, # if not None -> joint attention context_pre_only = None, ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.processor = processor self.dim = dim self.heads = heads self.inner_dim = dim_head * heads self.dropout = dropout self.context_dim = context_dim self.context_pre_only = context_pre_only self.to_q = nn.Linear(dim, self.inner_dim) self.to_k = nn.Linear(dim, self.inner_dim) self.to_v = nn.Linear(dim, self.inner_dim) if self.context_dim is not None: self.to_k_c = nn.Linear(context_dim, self.inner_dim) self.to_v_c = nn.Linear(context_dim, self.inner_dim) if self.context_pre_only is not None: self.to_q_c = nn.Linear(context_dim, self.inner_dim) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(self.inner_dim, dim)) self.to_out.append(nn.Dropout(dropout)) if self.context_pre_only is not None and not self.context_pre_only: self.to_out_c = nn.Linear(self.inner_dim, dim) def forward( self, x: float['b n d'], # noised input x c: float['b n d'] = None, # context c mask: bool['b n'] | None = None, rope = None, # rotary position embedding for x c_rope = None, # rotary position embedding for c ) -> torch.Tensor: if c is not None: return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope) else: return self.processor(self, x, mask = mask, rope = rope) # Attention processor class AttnProcessor: def __init__(self): pass def __call__( self, attn: Attention, x: float['b n d'], # noised input x mask: bool['b n'] | None = None, rope = None, # rotary position embedding ) -> torch.FloatTensor: batch_size = x.shape[0] # `sample` projections. query = attn.to_q(x) key = attn.to_k(x) value = attn.to_v(x) # apply rotary position embedding if rope is not None: freqs, xpos_scale = rope q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.) query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) # attention inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # mask. e.g. inference got a batch with different target durations, mask out the padding if mask is not None: attn_mask = mask attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n') attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) else: attn_mask = None x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False) x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) x = x.to(query.dtype) # linear proj x = attn.to_out[0](x) # dropout x = attn.to_out[1](x) if mask is not None: mask = rearrange(mask, 'b n -> b n 1') x = x.masked_fill(~mask, 0.) return x # Joint Attention processor for MM-DiT # modified from diffusers/src/diffusers/models/attention_processor.py class JointAttnProcessor: def __init__(self): pass def __call__( self, attn: Attention, x: float['b n d'], # noised input x c: float['b nt d'] = None, # context c, here text mask: bool['b n'] | None = None, rope = None, # rotary position embedding for x c_rope = None, # rotary position embedding for c ) -> torch.FloatTensor: residual = x batch_size = c.shape[0] # `sample` projections. query = attn.to_q(x) key = attn.to_k(x) value = attn.to_v(x) # `context` projections. c_query = attn.to_q_c(c) c_key = attn.to_k_c(c) c_value = attn.to_v_c(c) # apply rope for context and noised input independently if rope is not None: freqs, xpos_scale = rope q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.) query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) if c_rope is not None: freqs, xpos_scale = c_rope q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.) c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale) c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale) # attention query = torch.cat([query, c_query], dim=1) key = torch.cat([key, c_key], dim=1) value = torch.cat([value, c_value], dim=1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # mask. e.g. inference got a batch with different target durations, mask out the padding if mask is not None: attn_mask = F.pad(mask, (0, c.shape[1]), value = True) # no mask for c (text) attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n') attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) else: attn_mask = None x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False) x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) x = x.to(query.dtype) # Split the attention outputs. x, c = ( x[:, :residual.shape[1]], x[:, residual.shape[1]:], ) # linear proj x = attn.to_out[0](x) # dropout x = attn.to_out[1](x) if not attn.context_pre_only: c = attn.to_out_c(c) if mask is not None: mask = rearrange(mask, 'b n -> b n 1') x = x.masked_fill(~mask, 0.) # c = c.masked_fill(~mask, 0.) # no mask for c (text) return x, c # DiT Block class DiTBlock(nn.Module): def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1): super().__init__() self.attn_norm = AdaLayerNormZero(dim) self.attn = Attention( processor = AttnProcessor(), dim = dim, heads = heads, dim_head = dim_head, dropout = dropout, ) self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") def forward(self, x, t, mask = None, rope = None): # x: noised input, t: time embedding # pre-norm & modulation for attention input norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t) # attention attn_output = self.attn(x=norm, mask=mask, rope=rope) # process attention output for input x x = x + gate_msa.unsqueeze(1) * attn_output norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm) x = x + gate_mlp.unsqueeze(1) * ff_output return x # MMDiT Block https://arxiv.org/abs/2403.03206 class MMDiTBlock(nn.Module): r""" modified from diffusers/src/diffusers/models/attention.py notes. _c: context related. text, cond, etc. (left part in sd3 fig2.b) _x: noised input related. (right part) context_pre_only: last layer only do prenorm + modulation cuz no more ffn """ def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1, context_pre_only = False): super().__init__() self.context_pre_only = context_pre_only self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim) self.attn_norm_x = AdaLayerNormZero(dim) self.attn = Attention( processor = JointAttnProcessor(), dim = dim, heads = heads, dim_head = dim_head, dropout = dropout, context_dim = dim, context_pre_only = context_pre_only, ) if not context_pre_only: self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_c = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") else: self.ff_norm_c = None self.ff_c = None self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_x = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") def forward(self, x, c, t, mask = None, rope = None, c_rope = None): # x: noised input, c: context, t: time embedding # pre-norm & modulation for attention input if self.context_pre_only: norm_c = self.attn_norm_c(c, t) else: norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t) norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t) # attention x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope) # process attention output for context c if self.context_pre_only: c = None else: # if not last layer c = c + c_gate_msa.unsqueeze(1) * c_attn_output norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] c_ff_output = self.ff_c(norm_c) c = c + c_gate_mlp.unsqueeze(1) * c_ff_output # process attention output for input x x = x + x_gate_msa.unsqueeze(1) * x_attn_output norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None] x_ff_output = self.ff_x(norm_x) x = x + x_gate_mlp.unsqueeze(1) * x_ff_output return c, x # time step conditioning embedding class TimestepEmbedding(nn.Module): def __init__(self, dim, freq_embed_dim=256): super().__init__() self.time_embed = SinusPositionEmbedding(freq_embed_dim) self.time_mlp = nn.Sequential( nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim) ) def forward(self, timestep: float['b']): time_hidden = self.time_embed(timestep) time = self.time_mlp(time_hidden) # b d return time