Spaces:
Running
on
Zero
Running
on
Zero
mrfakename
commited on
Commit
•
7c7f70a
1
Parent(s):
4d3835d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ABOUT = """
|
2 |
+
# TB-OCR Unofficial Demo
|
3 |
+
|
4 |
+
This is an unofficial demo of [yifeihu/TB-OCR-preview-0.1](https://huggingface.co/yifeihu/TB-OCR-preview-0.1).
|
5 |
+
|
6 |
+
Overview of TB-OCR:
|
7 |
+
|
8 |
+
> TB-OCR-preview (Text Block OCR), created by [Yifei Hu](https://x.com/hu_yifei), is an end-to-end OCR model handling text, math latex, and markdown formats all at once. The model takes a block of text as the input and returns clean markdown output. Headers are marked with `##`. Math expressions are guaranteed to be wrapped in brackets `\( inline math \) \[ display math \]` for easier parsing. This model does not require line-detection or math formula detection.
|
9 |
+
|
10 |
+
(From the [model card](https://huggingface.co/yifeihu/TB-OCR-preview-0.1))
|
11 |
+
"""
|
12 |
+
# check out https://huggingface.co/microsoft/Phi-3.5-vision-instruct for more details
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
16 |
+
from PIL import Image
|
17 |
+
import requests
|
18 |
+
|
19 |
+
model_id = "yifeihu/TB-OCR-preview-0.1"
|
20 |
+
|
21 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
model_id,
|
25 |
+
device_map="cuda",
|
26 |
+
trust_remote_code=True,
|
27 |
+
torch_dtype="auto",
|
28 |
+
_attn_implementation='flash_attention_2',
|
29 |
+
load_in_4bit=True # Optional: Load model in 4-bit mode to save memory
|
30 |
+
)
|
31 |
+
|
32 |
+
processor = AutoProcessor.from_pretrained(model_id,
|
33 |
+
trust_remote_code=True,
|
34 |
+
num_crops=16
|
35 |
+
)
|
36 |
+
|
37 |
+
def phi_ocr(image_url):
|
38 |
+
question = "Convert the text to markdown format."
|
39 |
+
image = Image.open(image_url)
|
40 |
+
prompt_message = [{
|
41 |
+
'role': 'user',
|
42 |
+
'content': f'<|image_1|>\n{question}',
|
43 |
+
}]
|
44 |
+
|
45 |
+
prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True)
|
46 |
+
inputs = processor(prompt, [image], return_tensors="pt").to("cuda")
|
47 |
+
|
48 |
+
generation_args = {
|
49 |
+
"max_new_tokens": 1024,
|
50 |
+
"temperature": 0.1,
|
51 |
+
"do_sample": False
|
52 |
+
}
|
53 |
+
|
54 |
+
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args
|
55 |
+
)
|
56 |
+
|
57 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
58 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
59 |
+
|
60 |
+
response = response.split("<image_end>")[0] # remove the image_end token
|
61 |
+
|
62 |
+
return response
|
63 |
+
|
64 |
+
import gradio as gr
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown(ABOUT)
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
img = gr.Image(label="Input image", type="filename")
|
71 |
+
btn = gr.Button("OCR")
|
72 |
+
with gr.Column():
|
73 |
+
out = gr.Markdown()
|
74 |
+
btn.click(phi_ocr, inputs=img, outputs=out)
|