File size: 2,242 Bytes
e875957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import os
import sys
import torch
from PIL import Image
import torchvision.transforms as transforms

from networks.drn_seg import DRNSub
from utils.tools import *
from utils.visualize import *


def load_classifier(model_path, gpu_id):
    if torch.cuda.is_available() and gpu_id != -1:
        device = 'cuda:{}'.format(gpu_id)
    else:
        device = 'cpu'
    model = DRNSub(1)
    state_dict = torch.load(model_path, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    model.to(device)
    model.device = device
    model.eval()
    return model


tf = transforms.Compose([transforms.ToTensor(),
                         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                              std=[0.229, 0.224, 0.225])])
def classify_fake(model, img_path, no_crop=False,
                  model_file='utils/dlib_face_detector/mmod_human_face_detector.dat'):
    # Data preprocessing
    im_w, im_h = Image.open(img_path).size
    if no_crop:
        face = Image.open(img_path).convert('RGB')
    else:
        faces = face_detection(img_path, verbose=False, model_file=model_file)
        if len(faces) == 0:
            print("no face detected by dlib, exiting")
            sys.exit()
        face, box = faces[0]
    face = resize_shorter_side(face, 400)[0]
    face_tens = tf(face).to(model.device)

    # Prediction
    with torch.no_grad():
        prob = model(face_tens.unsqueeze(0))[0].sigmoid().cpu().item()
    return prob


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_path", required=True, help="the model input")
    parser.add_argument(
        "--model_path", required=True, help="path to the drn model")
    parser.add_argument(
        "--gpu_id", default='0', help="the id of the gpu to run model on")
    parser.add_argument(
        "--no_crop",
        action="store_true",
        help="do not use a face detector, instead run on the full input image")
    args = parser.parse_args()

    model = load_classifier(args.model_path, args.gpu_id)
    prob = classify_fake(model, args.input_path, args.no_crop)
    print("Probibility being modified by Photoshop FAL: {:.2f}%".format(prob*100))