P-PD / global_classifier.py
mrneuralnet's picture
Initial commit
e875957
import argparse
import os
import sys
import torch
from PIL import Image
import torchvision.transforms as transforms
from networks.drn_seg import DRNSub
from utils.tools import *
from utils.visualize import *
def load_classifier(model_path, gpu_id):
if torch.cuda.is_available() and gpu_id != -1:
device = 'cuda:{}'.format(gpu_id)
else:
device = 'cpu'
model = DRNSub(1)
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict['model'])
model.to(device)
model.device = device
model.eval()
return model
tf = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
def classify_fake(model, img_path, no_crop=False,
model_file='utils/dlib_face_detector/mmod_human_face_detector.dat'):
# Data preprocessing
im_w, im_h = Image.open(img_path).size
if no_crop:
face = Image.open(img_path).convert('RGB')
else:
faces = face_detection(img_path, verbose=False, model_file=model_file)
if len(faces) == 0:
print("no face detected by dlib, exiting")
sys.exit()
face, box = faces[0]
face = resize_shorter_side(face, 400)[0]
face_tens = tf(face).to(model.device)
# Prediction
with torch.no_grad():
prob = model(face_tens.unsqueeze(0))[0].sigmoid().cpu().item()
return prob
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_path", required=True, help="the model input")
parser.add_argument(
"--model_path", required=True, help="path to the drn model")
parser.add_argument(
"--gpu_id", default='0', help="the id of the gpu to run model on")
parser.add_argument(
"--no_crop",
action="store_true",
help="do not use a face detector, instead run on the full input image")
args = parser.parse_args()
model = load_classifier(args.model_path, args.gpu_id)
prob = classify_fake(model, args.input_path, args.no_crop)
print("Probibility being modified by Photoshop FAL: {:.2f}%".format(prob*100))