mrtlive commited on
Commit
79b5495
1 Parent(s): cb59e2d

added some segmentation functions

Browse files
Files changed (2) hide show
  1. app.py +62 -4
  2. requirements.txt +7 -0
app.py CHANGED
@@ -1,7 +1,65 @@
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import matplotlib
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import torch
7
  import gradio as gr
8
 
9
+ from PIL import Image
 
10
 
11
+ from segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
12
+
13
+ matplotlib.pyplot.switch_backend('Agg') # for matplotlib to work in gradio
14
+
15
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # use GPU if available
16
+
17
+ #setup model
18
+ sam_checkpoint = "sam_vit_h_4b8939.pth"
19
+ device = "cuda"
20
+ model_type = "default"
21
+ sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
22
+ sam.to(device=device)
23
+ mask_generator = SamAutomaticMaskGenerator(sam)
24
+ predictor = SamPredictor(sam)
25
+
26
+ def show_anns(anns):
27
+ if len(anns) == 0:
28
+ return
29
+ sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
30
+ ax = plt.gca()
31
+ ax.set_autoscale_on(False)
32
+ polygons = []
33
+ color = []
34
+ for ann in sorted_anns:
35
+ m = ann['segmentation']
36
+ img = np.ones((m.shape[0], m.shape[1], 3))
37
+ color_mask = np.random.random((1, 3)).tolist()[0]
38
+ for i in range(3):
39
+ img[:,:,i] = color_mask[i]
40
+ ax.imshow(np.dstack((img, m*0.35)))
41
+
42
+ def segment_image(image):
43
+ masks = mask_generator.generate(image)
44
+ plt.clf()
45
+ ppi = 100
46
+ height, width, _ = image.shape
47
+ plt.figure(figsize=(width / ppi, height / ppi), dpi=ppi)
48
+ plt.imshow(image)
49
+ show_anns(masks)
50
+ plt.axis('off')
51
+ plt.savefig('output.png', bbox_inches='tight', pad_inches=0)
52
+ output = cv2.imread('output.png')
53
+ return Image.fromarray(output)
54
+
55
+ with gr.blocks() as demo:
56
+ gr.MArkdown("## Segment-anything Demo")
57
+
58
+ with gr.Row():
59
+ image_input = gr.Image()
60
+ image_output = gr.Image()
61
+
62
+ segment_image_button = gr.Button("Segment Image")
63
+ segment_image_button.click(segment_image, image_input, image_output)
64
+
65
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio
2
+ opencv-python
3
+ matplotlib
4
+ numpy
5
+ torch
6
+ torchvision
7
+ git+https://github.com/facebookresearch/segment-anything.git