File size: 4,227 Bytes
b6fa3b6
 
d02b0d1
b6fa3b6
 
 
d02b0d1
b6fa3b6
d02b0d1
f04732f
f4ce971
7377d18
 
 
 
 
 
 
 
 
 
d02b0d1
 
6c67d55
d02b0d1
6c67d55
b6fa3b6
 
 
6c67d55
d02b0d1
6c67d55
 
f04732f
b6fa3b6
f04732f
 
d5fb61d
 
b6fa3b6
 
 
 
 
d5fb61d
 
 
 
b6fa3b6
 
1117f0e
8eae1e0
 
b6fa3b6
1117f0e
70f2766
b6fa3b6
 
 
 
70f2766
 
b6fa3b6
 
 
d5fb61d
70f2766
 
b6fa3b6
 
 
d5fb61d
70f2766
b6fa3b6
70f2766
b6fa3b6
 
 
58cf028
b6fa3b6
 
 
 
 
 
58cf028
f04732f
 
7377d18
 
 
 
b6fa3b6
 
 
 
 
 
7377d18
 
 
 
50def22
d5fb61d
b6fa3b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import time
from threading import Thread

import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer

import spaces


PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner</p>
</div>
"""


model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"

processor = AutoProcessor.from_pretrained(model_id)

model = LlavaForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
)

model.to("cuda:0")
model.generation_config.eos_token_id = 128009


@spaces.GPU
def bot_streaming(message, history):
    print(message)
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            gr.Error("You need to upload an image for LLaVA to work.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        gr.Error("You need to upload an image for LLaVA to work.")

    prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"prompt: {prompt}")
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"text_prompt: {text_prompt}")

    buffer = ""
    time.sleep(0.5)
    for new_text in streamer:
        # find <|eot_id|> and remove it from the new_text
        if "<|eot_id|>" in new_text:
            new_text = new_text.split("<|eot_id|>")[0]
        buffer += new_text

        # generated_text_without_prompt = buffer[len(text_prompt):]
        generated_text_without_prompt = buffer
        # print(generated_text_without_prompt)
        time.sleep(0.06)
        # print(f"new_text: {generated_text_without_prompt}")
        yield generated_text_without_prompt


chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
    gr.ChatInterface(
    fn=bot_streaming,
    title="LLaVA Llama-3-8B",
    examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
              {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
    description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
    stop_btn="Stop Generation",
    multimodal=True,
    textbox=chat_input,
    chatbot=chatbot,
    )

demo.queue(api_open=False)
demo.launch(show_api=False, share=False)