|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
model_name_or_path = "TheBloke/dolphin-2.5-mixtral-8x7b-GPTQ" |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, |
|
device_map="auto", |
|
trust_remote_code=False, |
|
revision="main") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) |
|
|
|
prompt = "Write a story about llamas" |
|
system_message = "You are a story writing assistant" |
|
prompt_template=f'''<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
''' |
|
|
|
print("\n\n*** Generate:") |
|
|
|
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() |
|
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) |
|
print(tokenizer.decode(output[0])) |
|
|
|
|
|
|
|
print("*** Pipeline:") |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
top_k=40, |
|
repetition_penalty=1.1 |
|
) |
|
|
|
print(pipe(prompt_template)[0]['generated_text']) |