|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
from matplotlib.patches import Patch |
|
import io |
|
from PIL import Image |
|
|
|
from transformers import TableTransformerImageProcessor, AutoModelForObjectDetection |
|
import torch |
|
|
|
import gradio as gr |
|
|
|
|
|
processor = TableTransformerImageProcessor(max_size=800) |
|
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") |
|
|
|
|
|
|
|
def box_cxcywh_to_xyxy(x): |
|
x_c, y_c, w, h = x.unbind(-1) |
|
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] |
|
return torch.stack(b, dim=1) |
|
|
|
|
|
def rescale_bboxes(out_bbox, size): |
|
img_w, img_h = size |
|
b = box_cxcywh_to_xyxy(out_bbox) |
|
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) |
|
return b |
|
|
|
|
|
def outputs_to_objects(outputs, img_size, id2label): |
|
m = outputs.logits.softmax(-1).max(-1) |
|
pred_labels = list(m.indices.detach().cpu().numpy())[0] |
|
pred_scores = list(m.values.detach().cpu().numpy())[0] |
|
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] |
|
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)] |
|
|
|
objects = [] |
|
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): |
|
class_label = id2label[int(label)] |
|
if not class_label == 'no object': |
|
objects.append({'label': class_label, 'score': float(score), |
|
'bbox': [float(elem) for elem in bbox]}) |
|
|
|
return objects |
|
|
|
|
|
def fig2img(fig): |
|
"""Convert a Matplotlib figure to a PIL Image and return it""" |
|
buf = io.BytesIO() |
|
fig.savefig(buf) |
|
buf.seek(0) |
|
img = Image.open(buf) |
|
return img |
|
|
|
|
|
def visualize_detected_tables(img, det_tables): |
|
plt.imshow(img, interpolation="lanczos") |
|
fig = plt.gcf() |
|
fig.set_size_inches(20, 20) |
|
ax = plt.gca() |
|
|
|
for det_table in det_tables: |
|
bbox = det_table['bbox'] |
|
|
|
if det_table['label'] == 'table': |
|
facecolor = (1, 0, 0.45) |
|
edgecolor = (1, 0, 0.45) |
|
alpha = 0.3 |
|
linewidth = 2 |
|
hatch='//////' |
|
elif det_table['label'] == 'table rotated': |
|
facecolor = (0.95, 0.6, 0.1) |
|
edgecolor = (0.95, 0.6, 0.1) |
|
alpha = 0.3 |
|
linewidth = 2 |
|
hatch='//////' |
|
else: |
|
continue |
|
|
|
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, |
|
edgecolor='none',facecolor=facecolor, alpha=0.1) |
|
ax.add_patch(rect) |
|
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, |
|
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha) |
|
ax.add_patch(rect) |
|
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0, |
|
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2) |
|
ax.add_patch(rect) |
|
|
|
plt.xticks([], []) |
|
plt.yticks([], []) |
|
|
|
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45), |
|
label='Table', hatch='//////', alpha=0.3), |
|
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1), |
|
label='Table (rotated)', hatch='//////', alpha=0.3)] |
|
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0, |
|
fontsize=10, ncol=2) |
|
plt.gcf().set_size_inches(10, 10) |
|
plt.axis('off') |
|
|
|
return fig |
|
|
|
|
|
def detect_table(image): |
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(pixel_values) |
|
|
|
|
|
id2label = model.config.id2label |
|
id2label[len(model.config.id2label)] = "no object" |
|
detected_tables = outputs_to_objects(outputs, image.size, id2label) |
|
|
|
|
|
fig = visualize_detected_tables(img, detected_tables) |
|
image = fig2img(fig) |
|
|
|
return image |
|
|
|
|
|
title = "Demo: table detection with Table Transformer" |
|
description = "Demo for the Table Transformer (TATR)." |
|
examples =[['example_pdf.jpg']] |
|
|
|
interface = gr.Interface(fn=detect_table, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil", label="Detected table"), |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
enable_queue=True) |
|
interface.launch(debug=True) |