Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
|
|
2 |
import matplotlib.patches as patches
|
3 |
from matplotlib.patches import Patch
|
4 |
import io
|
5 |
-
from PIL import Image
|
6 |
|
7 |
from transformers import TableTransformerImageProcessor, AutoModelForObjectDetection
|
8 |
import torch
|
@@ -13,6 +13,10 @@ import gradio as gr
|
|
13 |
processor = TableTransformerImageProcessor(max_size=800)
|
14 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# for output bounding box post-processing
|
18 |
def box_cxcywh_to_xyxy(x):
|
@@ -103,7 +107,7 @@ def visualize_detected_tables(img, det_tables):
|
|
103 |
return fig
|
104 |
|
105 |
|
106 |
-
def
|
107 |
# prepare image for the model
|
108 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
109 |
|
@@ -117,8 +121,41 @@ def detect_table(image):
|
|
117 |
detected_tables = outputs_to_objects(outputs, image.size, id2label)
|
118 |
|
119 |
# visualize
|
120 |
-
fig = visualize_detected_tables(image, detected_tables)
|
121 |
-
image = fig2img(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
return image
|
124 |
|
@@ -127,7 +164,7 @@ title = "Demo: table detection with Table Transformer"
|
|
127 |
description = "Demo for the Table Transformer (TATR)."
|
128 |
examples =[['image.png']]
|
129 |
|
130 |
-
app = gr.Interface(fn=
|
131 |
inputs=gr.Image(type="pil"),
|
132 |
outputs=gr.Image(type="pil", label="Detected table"),
|
133 |
title=title,
|
|
|
2 |
import matplotlib.patches as patches
|
3 |
from matplotlib.patches import Patch
|
4 |
import io
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
|
7 |
from transformers import TableTransformerImageProcessor, AutoModelForObjectDetection
|
8 |
import torch
|
|
|
13 |
processor = TableTransformerImageProcessor(max_size=800)
|
14 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
|
15 |
|
16 |
+
# load table structure recognition model
|
17 |
+
structure_processor = TableTransformerImageProcessor(max_size=1000)
|
18 |
+
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-structure-recognition-v1.1-all")
|
19 |
+
|
20 |
|
21 |
# for output bounding box post-processing
|
22 |
def box_cxcywh_to_xyxy(x):
|
|
|
107 |
return fig
|
108 |
|
109 |
|
110 |
+
def detect_and_crop_table(image):
|
111 |
# prepare image for the model
|
112 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
113 |
|
|
|
121 |
detected_tables = outputs_to_objects(outputs, image.size, id2label)
|
122 |
|
123 |
# visualize
|
124 |
+
# fig = visualize_detected_tables(image, detected_tables)
|
125 |
+
# image = fig2img(fig)
|
126 |
+
|
127 |
+
# crop first detected table out of image
|
128 |
+
cropped_table = image.crop(objects[0]["bbox"])
|
129 |
+
|
130 |
+
return cropped_table
|
131 |
+
|
132 |
+
|
133 |
+
def recognize_table(image):
|
134 |
+
# prepare image for the model
|
135 |
+
pixel_values = structure_processor(images=cropped_table, return_tensors="pt").pixel_values
|
136 |
+
|
137 |
+
# forward pass
|
138 |
+
with torch.no_grad():
|
139 |
+
outputs = structure_model(pixel_values)
|
140 |
+
|
141 |
+
# postprocess to get individual elements
|
142 |
+
id2label = structure_modelmodel.config.id2label
|
143 |
+
id2label[len(structure_modelmodel.config.id2label)] = "no object"
|
144 |
+
detected_tables = outputs_to_objects(outputs, image.size, id2label)
|
145 |
+
|
146 |
+
# visualize cells on cropped table
|
147 |
+
draw = ImageDraw.Draw(image)
|
148 |
+
|
149 |
+
for cell in cells:
|
150 |
+
draw.rectangle(cell["bbox"], outline="red")
|
151 |
+
|
152 |
+
return image
|
153 |
+
|
154 |
+
|
155 |
+
def process_pdf(image):
|
156 |
+
cropped_table = detect_and_crop_table(image)
|
157 |
+
|
158 |
+
image = recognize_table(cropped_table)
|
159 |
|
160 |
return image
|
161 |
|
|
|
164 |
description = "Demo for the Table Transformer (TATR)."
|
165 |
examples =[['image.png']]
|
166 |
|
167 |
+
app = gr.Interface(fn=process_pdf,
|
168 |
inputs=gr.Image(type="pil"),
|
169 |
outputs=gr.Image(type="pil", label="Detected table"),
|
170 |
title=title,
|