Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install git+https://github.com/openai/whisper.git") | |
import whisper | |
import evaluate | |
from evaluate.utils import launch_gradio_widget | |
import gradio as gr | |
import torch | |
import pandas as pd | |
import classify | |
import replace_explitives | |
from whisper.model import Whisper | |
from whisper.tokenizer import get_tokenizer | |
from speechbrain.pretrained.interfaces import foreign_class | |
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer | |
# pull in emotion detection | |
# --- Add element for specification | |
# pull in text classification | |
# --- Add custom labels | |
# --- Associate labels with radio elements | |
# add logic to initiate mock notificaiton when detected | |
# pull in misophonia-specific model | |
model_cache = {} | |
# Building prediction function for gradio | |
emo_dict = { | |
'sad': 'Sad', | |
'hap': 'Happy', | |
'ang': 'Anger', | |
'neu': 'Neutral' | |
} | |
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own | |
class_options = { | |
"racism": ["racism", "hate speech", "bigotry", "racially targeted", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"], | |
"LGBTQ+ hate": ["gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+", "hate speech"], | |
"sexually explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexist", "sexually demeaning", "sexual violence", "victim blaming"], | |
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"] | |
} | |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large") | |
def classify_emotion(audio): | |
#### Emotion classification #### | |
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier") | |
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio) | |
return emo_dict[text_lab[0]] | |
def slider_logic(slider): | |
threshold = 0 | |
if slider == 1: | |
threshold = .98 | |
elif slider == 2: | |
threshold = .88 | |
elif slider == 3: | |
threshold = .77 | |
elif slider == 4: | |
threshold = .66 | |
elif slider == 5: | |
threshold = .55 | |
else: | |
threshold = [] | |
return threshold | |
# Create a Gradio interface with audio file and text inputs | |
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider, intervention): | |
# Transcribe the audio file using Whisper ASR | |
if audio_file != None: | |
transcribed_text = pipe(audio_file)["text"] | |
else: | |
transcribed_text = text_input | |
if classify_anxiety != "misophonia": | |
print("emo_class ", emo_class, "explitive select", explitive_selection) | |
## SLIDER ## | |
threshold = slider_logic(slider) | |
#------- explitive call --------------- | |
if replace_explitives != None and emo_class == None: | |
transcribed_text = replace_explitives.sub_explitives(transcribed_text, explitive_selection) | |
#### Toxicity Classifier #### | |
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target") | |
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement") | |
toxicity_results = toxicity_module.compute(predictions=[transcribed_text]) | |
toxicity_score = toxicity_results["toxicity"][0] | |
print(toxicity_score) | |
# emo call | |
if emo_class != None: | |
classify_emotion(audio_file) | |
#### Text classification ##### | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
sequence_to_classify = transcribed_text | |
print(classify_anxiety, class_options) | |
candidate_labels = class_options.get(classify_anxiety, []) | |
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False) | |
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True) | |
print("class output ", type(classification_output)) | |
# classification_df = pd.DataFrame.from_dict(classification_output) | |
print("keys ", classification_output.keys()) | |
formatted_classification_output = "" | |
# plot.update(x=classification_df["labels"], y=classification_df["scores"]) | |
if toxicity_score > threshold: | |
print("threshold exceeded!! Launch intervention") | |
return toxicity_score, classification_output, transcribed_text | |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}" | |
else: | |
threshold = slider_logic(slider) | |
model = whisper.load_model("large") | |
# model = model_cache[model_name] | |
# class_names = classify_anxiety.split(",") | |
class_names_list = class_options.get(classify_anxiety, []) | |
class_str = "" | |
for elm in class_names_list: | |
class_str += elm + "," | |
#class_names = class_names_temp.split(",") | |
class_names = class_str.split(",") | |
print("class names ", class_names, "classify_anxiety ", classify_anxiety) | |
tokenizer = get_tokenizer("large") | |
# tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large") | |
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs( | |
model=model, | |
class_names=class_names, | |
# class_names=classify_anxiety, | |
tokenizer=tokenizer, | |
) | |
audio_features = classify.calculate_audio_features(audio_file, model) | |
average_logprobs = classify.calculate_average_logprobs( | |
model=model, | |
audio_features=audio_features, | |
class_names=class_names, | |
tokenizer=tokenizer, | |
) | |
average_logprobs -= internal_lm_average_logprobs | |
scores = average_logprobs.softmax(-1).tolist() | |
return {class_name: score for class_name, score in zip(class_names, scores)} | |
if toxicity_score > threshold: | |
print("threshold exceeded!! Launch intervention") | |
return classify_anxiety | |
with gr.Blocks() as iface: | |
with gr.Column(): | |
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"]) | |
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.") | |
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.") | |
intervention_type = gr.Dropdown(choices=["Therapy App", "Audio File", "Text Message"]) | |
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity") | |
with gr.Column(): | |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File") | |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...") | |
submit_btn = gr.Button(label="Run") | |
with gr.Column(): | |
out_val = gr.Textbox() | |
out_class = gr.Textbox() | |
out_text = gr.Textbox() | |
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text]) | |
iface.launch() |