Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -66,7 +66,7 @@ def slider_logic(slider):
|
|
66 |
return threshold
|
67 |
|
68 |
# Create a Gradio interface with audio file and text inputs
|
69 |
-
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider
|
70 |
# Transcribe the audio file using Whisper ASR
|
71 |
if audio_file != None:
|
72 |
transcribed_text = pipe(audio_file)["text"]
|
@@ -119,8 +119,7 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
|
|
119 |
affirm = positive_affirmations()
|
120 |
else:
|
121 |
affirm = ""
|
122 |
-
|
123 |
-
print("output column: ", holder)
|
124 |
return toxicity_score, classification_output, transcribed_text, affirm
|
125 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
126 |
else:
|
@@ -175,7 +174,6 @@ with gr.Blocks() as iface:
|
|
175 |
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
|
176 |
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
|
177 |
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
|
178 |
-
intervention_type = gr.Dropdown(choices=["Therapy App", "Audio File", "Text Message"])
|
179 |
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
|
180 |
with gr.Column():
|
181 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
@@ -186,6 +184,6 @@ with gr.Blocks() as iface:
|
|
186 |
out_class = gr.Textbox()
|
187 |
out_text = gr.Textbox()
|
188 |
out_affirm = gr.Textbox()
|
189 |
-
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider
|
190 |
|
191 |
iface.launch()
|
|
|
66 |
return threshold
|
67 |
|
68 |
# Create a Gradio interface with audio file and text inputs
|
69 |
+
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider):
|
70 |
# Transcribe the audio file using Whisper ASR
|
71 |
if audio_file != None:
|
72 |
transcribed_text = pipe(audio_file)["text"]
|
|
|
119 |
affirm = positive_affirmations()
|
120 |
else:
|
121 |
affirm = ""
|
122 |
+
|
|
|
123 |
return toxicity_score, classification_output, transcribed_text, affirm
|
124 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
125 |
else:
|
|
|
174 |
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
|
175 |
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
|
176 |
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
|
|
|
177 |
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
|
178 |
with gr.Column():
|
179 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
|
|
184 |
out_class = gr.Textbox()
|
185 |
out_text = gr.Textbox()
|
186 |
out_affirm = gr.Textbox()
|
187 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider], outputs=[out_val, out_class, out_text, out_affirm])
|
188 |
|
189 |
iface.launch()
|