File size: 2,146 Bytes
6d69363 973bb39 f1f5157 e3532f0 d0d39bc e3532f0 791347f f1f5157 07630c7 36bc51d 33e40de 3a161c0 973bb39 f1f5157 973bb39 f1f5157 973bb39 f1f5157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import transformers
from transformers import pipeline
import gradio as gr
import pandas
import matplotlib.pyplot as plt
import os
import sys
os.system('python -m pip install --upgrade pip')
os.system('pip install -U scikit-learn scipy matplotlib')
#import scikit-learn
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
os.system("pip install git+https://github.com/openai/whisper.git")
import whisper
# os.system("pip install numpy==1.20.0")
# os.system("pip install numba==0.53")
# os.system("python -c import numba==0.53")
whisper_esc50 = pipeline(model="mskov/whisper_esc50")
whisper_miso= pipeline(model="mskov/whisper_miso")
whisper_tiny = whisper.load_model("tiny")
whisper_base = whisper.load_model("base")
dataset = load_dataset("mskov/miso_test")
names = ['path', 'file_name', 'category']
dataframe = pandas.read_csv(url, names=names)
array = dataframe.values
X = array[:,0:2]
Y = array[:,2]
# prepare configuration for cross validation test harness
seed = 7
# prepare models
models = [whisper_esc50, whisper_miso, whisper_tiny, whisper_base]
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
# boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show() |