|
import transformers |
|
from transformers import pipeline |
|
import gradio as gr |
|
import os |
|
import sys |
|
os.system("pip install evaluate") |
|
os.system("pip install datasets") |
|
os.system("pip install spicy") |
|
os.system("pip install soundfile") |
|
os.system("pip install datasets[audio]") |
|
from evaluate import evaluator |
|
from datasets import load_dataset, Audio |
|
|
|
|
|
p = pipeline("automatic-speech-recognition") |
|
|
|
task_evaluator = evaluator("automatic-speech-recognition") |
|
|
|
data = load_dataset("audiofolder", data_dir="mskov/miso_test/test_set") |
|
results = task_evaluator.compute( |
|
model_or_pipeline="https://huggingface.co/mskov/whisper_miso", |
|
data=data, |
|
input_column="file_name", |
|
label_column="category", |
|
metric="wer", |
|
) |
|
print(results) |
|
|
|
|
|
def transcribe(audio, state=""): |
|
text = p(audio)["text"] |
|
state += text + " " |
|
return state, state |
|
|
|
gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(source="microphone", type="filepath", streaming=True), |
|
"state" |
|
], |
|
outputs=[ |
|
"textbox", |
|
"state" |
|
], |
|
live=True).launch() |
|
|