|
from typing import List, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from whisper.audio import N_FRAMES, N_MELS, log_mel_spectrogram, pad_or_trim |
|
from whisper.model import Whisper |
|
from whisper.tokenizer import Tokenizer |
|
|
|
|
|
@torch.no_grad() |
|
def calculate_audio_features(audio_path: Optional[str], model: Whisper) -> torch.Tensor: |
|
if audio_path is None: |
|
segment = torch.zeros((N_MELS, N_FRAMES), dtype=torch.float32).to(model.device) |
|
else: |
|
mel = log_mel_spectrogram(audio_path) |
|
segment = pad_or_trim(mel, N_FRAMES).to(model.device) |
|
return model.embed_audio(segment.unsqueeze(0)) |
|
|
|
|
|
@torch.no_grad() |
|
def calculate_average_logprobs( |
|
model: Whisper, |
|
audio_features: torch.Tensor, |
|
class_names: List[str], |
|
tokenizer: Tokenizer, |
|
) -> torch.Tensor: |
|
initial_tokens = ( |
|
torch.tensor(tokenizer.sot_sequence_including_notimestamps).unsqueeze(0).to(model.device) |
|
) |
|
eot_token = torch.tensor([tokenizer.eot]).unsqueeze(0).to(model.device) |
|
|
|
average_logprobs = torch.zeros(len(class_names)) |
|
for i, class_name in enumerate(class_names): |
|
class_name_tokens = ( |
|
torch.tensor(tokenizer.encode(" " + class_name)).unsqueeze(0).to(model.device) |
|
) |
|
input_tokens = torch.cat([initial_tokens, class_name_tokens, eot_token], dim=1) |
|
|
|
logits = model.logits(input_tokens, audio_features) |
|
logprobs = F.log_softmax(logits, dim=-1).squeeze(0) |
|
logprobs = logprobs[len(tokenizer.sot_sequence_including_notimestamps) - 1 : -1] |
|
logprobs = torch.gather(logprobs, dim=-1, index=class_name_tokens.view(-1, 1)) |
|
average_logprob = logprobs.mean().item() |
|
average_logprobs[i] = average_logprob |
|
|
|
return average_logprobs |
|
|
|
|
|
def calculate_internal_lm_average_logprobs( |
|
model: Whisper, |
|
class_names: List[str], |
|
tokenizer: Tokenizer, |
|
verbose: bool = False, |
|
) -> torch.Tensor: |
|
audio_features_from_empty_input = calculate_audio_features(None, model) |
|
average_logprobs = calculate_average_logprobs( |
|
model=model, |
|
audio_features=audio_features_from_empty_input, |
|
class_names=class_names, |
|
tokenizer=tokenizer, |
|
) |
|
if verbose: |
|
print("Internal LM average log probabilities for each class:") |
|
for i, class_name in enumerate(class_names): |
|
print(f" {class_name}: {average_logprobs[i]:.3f}") |
|
return average_logprobs |
|
|