mskov commited on
Commit
09dafeb
β€’
1 Parent(s): 64d14b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -42
app.py CHANGED
@@ -7,14 +7,6 @@ import os
7
  import sys
8
  os.system('python -m pip install --upgrade pip')
9
  os.system('pip install -U scikit-learn scipy matplotlib')
10
- #import scikit-learn
11
- from sklearn import model_selection
12
- from sklearn.linear_model import LogisticRegression
13
- from sklearn.tree import DecisionTreeClassifier
14
- from sklearn.neighbors import KNeighborsClassifier
15
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
16
- from sklearn.naive_bayes import GaussianNB
17
- from sklearn.svm import SVC
18
  os.system("pip install git+https://github.com/openai/whisper.git")
19
  import whisper
20
  # os.system("pip install numpy==1.20.0")
@@ -28,37 +20,3 @@ whisper_tiny = whisper.load_model("tiny")
28
  whisper_base = whisper.load_model("base")
29
 
30
  dataset = load_dataset("mskov/miso_test")
31
-
32
- names = ['path', 'file_name', 'category']
33
- dataframe = pandas.read_csv(url, names=names)
34
- array = dataframe.values
35
- X = array[:,0:2]
36
- Y = array[:,2]
37
- # prepare configuration for cross validation test harness
38
- seed = 7
39
- # prepare models
40
- models = [whisper_esc50, whisper_miso, whisper_tiny, whisper_base]
41
- models.append(('LR', LogisticRegression()))
42
- models.append(('LDA', LinearDiscriminantAnalysis()))
43
- models.append(('KNN', KNeighborsClassifier()))
44
- models.append(('CART', DecisionTreeClassifier()))
45
- models.append(('NB', GaussianNB()))
46
- models.append(('SVM', SVC()))
47
- # evaluate each model in turn
48
- results = []
49
- names = []
50
- scoring = 'accuracy'
51
- for name, model in models:
52
- kfold = model_selection.KFold(n_splits=10, random_state=seed)
53
- cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
54
- results.append(cv_results)
55
- names.append(name)
56
- msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
57
- print(msg)
58
- # boxplot algorithm comparison
59
- fig = plt.figure()
60
- fig.suptitle('Algorithm Comparison')
61
- ax = fig.add_subplot(111)
62
- plt.boxplot(results)
63
- ax.set_xticklabels(names)
64
- plt.show()
 
7
  import sys
8
  os.system('python -m pip install --upgrade pip')
9
  os.system('pip install -U scikit-learn scipy matplotlib')
 
 
 
 
 
 
 
 
10
  os.system("pip install git+https://github.com/openai/whisper.git")
11
  import whisper
12
  # os.system("pip install numpy==1.20.0")
 
20
  whisper_base = whisper.load_model("base")
21
 
22
  dataset = load_dataset("mskov/miso_test")