Update app.py
Browse files
app.py
CHANGED
@@ -32,8 +32,23 @@ model = WhisperForConditionalGeneration.from_pretrained("mskov/whisper-small-esc
|
|
32 |
|
33 |
|
34 |
# Remove brackets and extra spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
def map_to_pred(batch):
|
38 |
cleaned_transcription = re.sub(r'\[[^\]]+\]', '', batch['category']).strip()
|
39 |
print("cleaned transcript", cleaned_transcription)
|
@@ -57,6 +72,7 @@ result = dataset.map(map_to_pred)
|
|
57 |
wer = load("wer")
|
58 |
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
59 |
'''
|
|
|
60 |
with torch.no_grad():
|
61 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
62 |
print("outputs ", outputs)
|
@@ -74,7 +90,7 @@ wer_score = wer(labels, predicted_text)
|
|
74 |
|
75 |
# Print or return WER score
|
76 |
print(f"Word Error Rate (WER): {wer_score}")
|
77 |
-
|
78 |
|
79 |
def transcribe(audio):
|
80 |
text = pipe(audio)["text"]
|
|
|
32 |
|
33 |
|
34 |
# Remove brackets and extra spaces
|
35 |
+
def map_to_pred(batch):
|
36 |
+
audio = batch["audio"]
|
37 |
+
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
|
38 |
+
batch["reference"] = processor.tokenizer._normalize(batch['category'])
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
predicted_ids = model.generate(input_features.to("cuda"))[0]
|
42 |
+
transcription = processor.decode(predicted_ids)
|
43 |
+
batch["prediction"] = processor.tokenizer._normalize(transcription)
|
44 |
+
return batch
|
45 |
|
46 |
+
result = dataset.map(map_to_pred)
|
47 |
+
|
48 |
+
wer = load("wer")
|
49 |
+
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
50 |
+
|
51 |
+
'''
|
52 |
def map_to_pred(batch):
|
53 |
cleaned_transcription = re.sub(r'\[[^\]]+\]', '', batch['category']).strip()
|
54 |
print("cleaned transcript", cleaned_transcription)
|
|
|
72 |
wer = load("wer")
|
73 |
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
74 |
'''
|
75 |
+
'''
|
76 |
with torch.no_grad():
|
77 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
78 |
print("outputs ", outputs)
|
|
|
90 |
|
91 |
# Print or return WER score
|
92 |
print(f"Word Error Rate (WER): {wer_score}")
|
93 |
+
'''
|
94 |
|
95 |
def transcribe(audio):
|
96 |
text = pipe(audio)["text"]
|