Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ os.system("pip install transformers==4.27.0")
|
|
4 |
os.system("pip install torch")
|
5 |
os.system("pip install openai")
|
6 |
os.system("pip install accelerate")
|
7 |
-
from transformers import pipeline, WhisperModel, WhisperTokenizer, WhisperFeatureExtractor, AutoFeatureExtractor
|
8 |
os.system("pip install evaluate")
|
9 |
#import evaluate
|
10 |
#os.system("pip install evaluate[evaluator]")
|
@@ -24,15 +24,33 @@ disable_caching()
|
|
24 |
|
25 |
huggingface_token = os.environ["huggingface_token"]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
model = WhisperModel.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
|
29 |
feature_extractor = AutoFeatureExtractor.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
|
|
|
|
|
30 |
ds = load_dataset("mskov/miso_test", split="test")
|
31 |
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
|
|
|
|
|
32 |
inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
|
33 |
print(inputs)
|
34 |
input_features = inputs.input_features
|
35 |
decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
36 |
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
37 |
list(last_hidden_state.shape)
|
38 |
-
print(list(last_hidden_state.shape))
|
|
|
|
4 |
os.system("pip install torch")
|
5 |
os.system("pip install openai")
|
6 |
os.system("pip install accelerate")
|
7 |
+
from transformers import pipeline, WhisperModel, WhisperTokenizer, WhisperFeatureExtractor, AutoFeatureExtractor, AutoProcessor
|
8 |
os.system("pip install evaluate")
|
9 |
#import evaluate
|
10 |
#os.system("pip install evaluate[evaluator]")
|
|
|
24 |
|
25 |
huggingface_token = os.environ["huggingface_token"]
|
26 |
|
27 |
+
processor = AutoProcessor.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
|
28 |
+
|
29 |
+
def prepare_dataset(batch):
|
30 |
+
audio = batch["audio"]
|
31 |
+
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
|
32 |
+
batch["input_length"] = len(batch["input_values"])
|
33 |
+
with processor.as_target_processor():
|
34 |
+
batch["labels"] = processor(batch["sentence"]).input_ids
|
35 |
+
return batch
|
36 |
+
dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)
|
37 |
+
print(dataset)
|
38 |
+
|
39 |
+
'''
|
40 |
|
41 |
model = WhisperModel.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
|
42 |
feature_extractor = AutoFeatureExtractor.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
|
43 |
+
|
44 |
+
|
45 |
ds = load_dataset("mskov/miso_test", split="test")
|
46 |
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
|
47 |
+
|
48 |
+
|
49 |
inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
|
50 |
print(inputs)
|
51 |
input_features = inputs.input_features
|
52 |
decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
53 |
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
54 |
list(last_hidden_state.shape)
|
55 |
+
print(list(last_hidden_state.shape))
|
56 |
+
'''
|