import transformers from transformers import pipeline import gradio as gr import os import sys os.system("pip install evaluate") os.system("pip install datasets") from evaluate import evaluator from datasets import load_dataset p = pipeline("automatic-speech-recognition") task_evaluator = evaluator("automatic-speech-recognition") data = load_dataset("mskov/miso_test", "en", split="test[:40]") results = task_evaluator.compute( model_or_pipeline="https://huggingface.co/mskov/whisper_miso", data=data, input_column="path", label_column="category", metric="wer", ) print(results) def transcribe(audio, state=""): text = p(audio)["text"] state += text + " " return state, state gr.Interface( fn=transcribe, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True).launch()